IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Road Traffic Congestion and Public Information: An Experimental Investigation

  • Anthony Ziegelmeyer
  • Frédéric Koessler
  • Kene Boun My
  • Laurent Denant-Boèmont

This paper reports laboratory experiments designed to study the impact of public information about past departure rates on congestion levels and travel costs. Our design is based on a discrete version of Arnott et al.'s (1990) bottleneck model. In all treatments, congestion occurs and the observed travel costs are quite similar to the predicted ones. Subjects' capacity to coordinate is not affected by the availability of public information on past departure rates, by the number of drivers or by the relative cost of delay. This seemingly absence of treatment effects is confirmed by our finding that a parameter-free reinforcement learning model best characterises individual behaviour. © 2008 LSE and the University of Bath

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.catchword.com/cgi-bin/cgi?ini=bc&body=linker&reqidx=0022-5258(20080101)42:1L.43;1-
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by London School of Economics and University of Bath in its journal Journal of Transport Economics and Policy.

Volume (Year): 42 (2008)
Issue (Month): 1 (January)
Pages: 43-82

as
in new window

Handle: RePEc:tpe:jtecpo:v:42:y:2008:i:1:p:43-82
Contact details of provider: Web page: http://www.bath.ac.uk/e-journals/jtep

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Nick Feltovich, 2000. "Reinforcement-Based vs. Belief-Based Learning Models in Experimental Asymmetric-Information," Econometrica, Econometric Society, vol. 68(3), pages 605-642, May.
  2. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
  3. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-79, June.
  4. David Levinson, 2003. "The Value of Advanced Traveler Information Systems for Route Choice," Working Papers 200307, University of Minnesota: Nexus Research Group.
  5. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-81, September.
  6. Selten, R. & Chmura, T. & Pitz, T. & Kube, S. & Schreckenberg, M., 2007. "Commuters route choice behaviour," Games and Economic Behavior, Elsevier, vol. 58(2), pages 394-406, February.
  7. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1990. "Economics of a bottleneck," Journal of Urban Economics, Elsevier, vol. 27(1), pages 111-130, January.
  8. Denant-Boèmont, L. & Petiot, R., 2003. "Information value and sequential decision-making in a transport setting: an experimental study," Transportation Research Part B: Methodological, Elsevier, vol. 37(4), pages 365-386, May.
  9. Arentze, T.A. & Timmermans, H.J.P., 2005. "Information gain, novelty seeking and travel: a model of dynamic activity-travel behavior under conditions of uncertainty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 125-145.
  10. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-60, May.
  11. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
  12. Mahmassani, Hani S. & Jou, Rong-Chang, 2000. "Transferring insights into commuter behavior dynamics from laboratory experiments to field surveys," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(4), pages 243-260, May.
  13. Moshe Ben-Akiva & Andre de Palma & Pavlos Kanaroglou, 1984. "Dynamic Model of Peak Period Traffic Congestion with Elastic Arrival Rates," Working Papers 588, Queen's University, Department of Economics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:tpe:jtecpo:v:42:y:2008:i:1:p:43-82. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.