IDEAS home Printed from https://ideas.repec.org/a/aea/aecrev/v99y2009i5p2149-76.html
   My bibliography  Save this article

Departure Times in Y-Shaped Traffic Networks with Multiple Bottlenecks

Author

Listed:
  • Terry E. Daniel
  • Eyran J. Gisches
  • Amnon Rapoport

Abstract

We study the departure time decisions of commuters traversing a traffic network with the goal of arriving at a common destination at a specified time. There are costs associated with arriving either too early or too late, and with delays experienced at bottlenecks. Our main hypothesis, based on the Nash equilibrium distribution of departure times, implies that, for certain parameter values, expanding the capacity of an upstream bottleneck can increase the total travel costs in the network. We report the results of a large-group laboratory experiment, which are strongly supportive of this counterintuitive hypothesis, and we discuss the implications. (JEL D85, R41)

Suggested Citation

  • Terry E. Daniel & Eyran J. Gisches & Amnon Rapoport, 2009. "Departure Times in Y-Shaped Traffic Networks with Multiple Bottlenecks," American Economic Review, American Economic Association, vol. 99(5), pages 2149-2176, December.
  • Handle: RePEc:aea:aecrev:v:99:y:2009:i:5:p:2149-76
    Note: DOI: 10.1257/aer.99.5.2149
    as

    Download full text from publisher

    File URL: http://www.aeaweb.org/articles.php?doi=10.1257/aer.99.5.2149
    Download Restriction: no

    File URL: http://www.aeaweb.org/aer/data/dec09/20070506_data.zip
    Download Restriction: no

    File URL: http://www.aeaweb.org/aer/data/dec09/20070506_app.pdf
    Download Restriction: Access to full text is restricted to AEA members and institutional subscribers.

    References listed on IDEAS

    as
    1. Morgan, John & Orzen, Henrik & Sefton, Martin, 2009. "Network architecture and traffic flows: Experiments on the Pigou-Knight-Downs and Braess Paradoxes," Games and Economic Behavior, Elsevier, vol. 66(1), pages 348-372, May.
    2. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    3. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1999. "Information and time-of-usage decisions in the bottleneck model with stochastic capacity and demand," European Economic Review, Elsevier, vol. 43(3), pages 525-548, March.
    4. F. H. Knight, 1924. "Some Fallacies in the Interpretation of Social Cost," The Quarterly Journal of Economics, Oxford University Press, vol. 38(4), pages 582-606.
    5. Selten, R. & Chmura, T. & Pitz, T. & Kube, S. & Schreckenberg, M., 2007. "Commuters route choice behaviour," Games and Economic Behavior, Elsevier, vol. 58(2), pages 394-406, February.
    6. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1990. "Economics of a bottleneck," Journal of Urban Economics, Elsevier, vol. 27(1), pages 111-130, January.
    7. Richard Arnott & André de Palma & Robin Lindsey, 1993. "Properties of Dynamic Traffic Equilibrium Involving Bottlenecks, Including a Paradox and Metering," Transportation Science, INFORMS, vol. 27(2), pages 148-160, May.
    8. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    9. Denant-Boèmont, L. & Petiot, R., 2003. "Information value and sequential decision-making in a transport setting: an experimental study," Transportation Research Part B: Methodological, Elsevier, vol. 37(4), pages 365-386, May.
    10. Chris Hendrickson & George Kocur, 1981. "Schedule Delay and Departure Time Decisions in a Deterministic Model," Transportation Science, INFORMS, vol. 15(1), pages 62-77, February.
    11. Smith, M. J., 1983. "The existence and calculation of traffic equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 17(4), pages 291-303, August.
    12. Iida, Yasunori & Akiyama, Takamasa & Uchida, Takashi, 1992. "Experimental analysis of dynamic route choice behavior," Transportation Research Part B: Methodological, Elsevier, vol. 26(1), pages 17-32, February.
    13. Gabuthy Yannick & Neveu Matthieu & Denant-Boemont Laurent, 2006. "The Coordination Problem in a Structural Model of Peak-Period Congestion: An Experimental Study," Review of Network Economics, De Gruyter, vol. 5(2), pages 1-26, June.
    14. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1993. "A Structural Model of Peak-Period Congestion: A Traffic Bottleneck with Elastic Demand," American Economic Review, American Economic Association, vol. 83(1), pages 161-179, March.
    15. Otsubo, Hironori & Rapoport, Amnon, 2008. "Vickrey's model of traffic congestion discretized," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 873-889, December.
    16. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    17. Hani S. Mahmassani & Gang-Len Chang & Robert Herman, 1986. "Individual Decisions and Collective Effects in a Simulated Traffic System," Transportation Science, INFORMS, vol. 20(4), pages 258-271, November.
    18. Rapoport, Amnon & Mak, Vincent & Zwick, Rami, 2006. "Navigating congested networks with variable demand: Experimental evidence," Journal of Economic Psychology, Elsevier, vol. 27(5), pages 648-666, October.
    19. Rapoport, Amnon & Kugler, Tamar & Dugar, Subhasish & Gisches, Eyran J., 2009. "Choice of routes in congested traffic networks: Experimental tests of the Braess Paradox," Games and Economic Behavior, Elsevier, vol. 65(2), pages 538-571, March.
    20. Ho, Teck H. & Camerer, Colin F. & Chong, Juin-Kuan, 2007. "Self-tuning experience weighted attraction learning in games," Journal of Economic Theory, Elsevier, vol. 133(1), pages 177-198, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berliant, Marcus, 2011. "Repeated Commuting," MPRA Paper 28979, University Library of Munich, Germany.
    2. Rapoport, Amnon & Stein, William E. & Mak, Vincent & Zwick, Rami & Seale, Darryl A., 2010. "Endogenous arrivals in batch queues with constant or variable capacity," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1166-1185, December.
    3. repec:eee:phsmap:v:483:y:2017:i:c:p:74-82 is not listed on IDEAS
    4. Vinayak Dixit & Laurent Denant-Boemont, 2014. "Is Equilibrium in Transport Pure Nash, Mixed or Stochastic? Evidence from Laboratory Experiments," Post-Print halshs-01103472, HAL.
    5. Conte, Anna & Scarsini, Marco & Sürücü, Oktay, 2015. "Does time pressure impair performance? An experiment on queueing behavior," Center for Mathematical Economics Working Papers 538, Center for Mathematical Economics, Bielefeld University.
    6. Rapoport, Amnon & Gisches, Eyran J. & Daniel, Terry & Lindsey, Robin, 2014. "Pre-trip information and route-choice decisions with stochastic travel conditions: Experiment," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 154-172.

    More about this item

    JEL classification:

    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation
    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise

    Lists

    This item is featured on the following reading lists or Wikipedia pages:
    1. Departure Times in Y-Shaped Traffic Networks with Multiple Bottlenecks (AER 2009) in ReplicationWiki

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:aecrev:v:99:y:2009:i:5:p:2149-76. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jane Voros) or (Michael P. Albert). General contact details of provider: http://edirc.repec.org/data/aeaaaea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.