IDEAS home Printed from https://ideas.repec.org/p/not/notcdx/2007-05.html

Network Architecture and Traffic Flows: Experiments on the Pigou-Knight-Downs and Braess Paradoxes

Author

Listed:
  • John Morgan

    (University of California, Berkeley)

  • Henrik Orzen

    (School of Economics, University of Nottingham)

  • Martin Sefton

    (School of Economics, University of Nottingham)

Abstract

This paper presents theory and experiments to investigate how network architecture influences route-choice behavior. We consider changes to networks that, theoretically, exhibit the Pigou- Knight-Downs and Braess Paradoxes. We show that these paradoxes are specific examples of more general classes of network change properties that we term the “least congestible route” and “size” principles, respectively. We find that technical improvements to networks induce adjustments in traffic flows. In the case of network changes based on the Pigou-Knight-Downs Paradox, these adjustments undermine short-term payoff improvements. In the case of network changes based on the Braess Paradox, these adjustments reinforce the counter-intuitive, but theoretically predicted, effect of reducing payoffs to network users. Although aggregate traffic flows are close to equilibrium levels, we see some systematic deviations from equilibrium. We show that the qualitative features of these discrepancies can be accounted for by a simple reinforcement learning model.

Suggested Citation

  • John Morgan & Henrik Orzen & Martin Sefton, 2007. "Network Architecture and Traffic Flows: Experiments on the Pigou-Knight-Downs and Braess Paradoxes," Discussion Papers 2007-05, The Centre for Decision Research and Experimental Economics, School of Economics, University of Nottingham.
  • Handle: RePEc:not:notcdx:2007-05
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Terry E. Daniel & Eyran J. Gisches & Amnon Rapoport, 2009. "Departure Times in Y-Shaped Traffic Networks with Multiple Bottlenecks," American Economic Review, American Economic Association, vol. 99(5), pages 2149-2176, December.
    2. Yamada, Takashi & Hanaki, Nobuyuki, 2016. "An experiment on Lowest Unique Integer Games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 88-102.
    3. Arvidsson, Niklas, 2013. "The milk run revisited: A load factor paradox with economic and environmental implications for urban freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 51(C), pages 56-62.
    4. Eyran Gisches & Amnon Rapoport, 2012. "Degrading network capacity may improve performance: private versus public monitoring in the Braess Paradox," Theory and Decision, Springer, vol. 73(2), pages 267-293, August.
    5. Nicholas Janusch & Stephan Kroll & Christopher Goemans & Todd L. Cherry & Steffen Kallbekken, 2021. "Learning to accept welfare-enhancing policies: an experimental investigation of congestion pricing," Experimental Economics, Springer;Economic Science Association, vol. 24(1), pages 59-86, March.
    6. Vinayak V Dixit & Laurent Denant-Boemont, 2014. "Is Equilibrium in Transport Pure Nash, Mixed or Stochastic? Evidence from Laboratory Experiments," Post-Print halshs-01103472, HAL.
    7. Emmanuel Dechenaux & Shakun Mago & Laura Razzolini, 2014. "Traffic congestion: an experimental study of the Downs-Thomson paradox," Experimental Economics, Springer;Economic Science Association, vol. 17(3), pages 461-487, September.
    8. Vincent Mak & Darryl A. Seale & Eyran J. Gisches & Amnon Rapoport & Meng Cheng & Myounghee Moon & Rui Yang, 2018. "A network ridesharing experiment with sequential choice of transportation mode," Theory and Decision, Springer, vol. 85(3), pages 407-433, October.
    9. Kasun P Wijayaratna & Vinayak V Dixit & Laurent Denant-Boemont & S Travis Waller, 2017. "An experimental study of the Online Information Paradox: Does en-route information improve road network performance?," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-17, September.
    10. Sun, Xiaoyan & Han, Xiao & Bao, Jian-Zhang & Jiang, Rui & Jia, Bin & Yan, Xiaoyong & Zhang, Boyu & Wang, Wen-Xu & Gao, Zi-You, 2017. "Decision dynamics of departure times: Experiments and modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 74-82.
    11. Yao, Jia & Cheng, Ziyi & Chen, Anthony, 2023. "Bibliometric analysis and systematic literature review of the traffic paradoxes (1968–2022)," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
    12. Wang, Tao & Liao, Peng & Tang, Tie-Qiao & Huang, Hai-Jun, 2022. "Deterministic capacity drop and morning commute in traffic corridor with tandem bottlenecks: A new manifestation of capacity expansion paradox," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    13. Miller, Harvey J., 2013. "Beyond sharing: cultivating cooperative transportation systems through geographic information science," Journal of Transport Geography, Elsevier, vol. 31(C), pages 296-308.
    14. Xiao Han & Yun Yu & Bin Jia & Zi‐You Gao & Rui Jiang & H. Michael Zhang, 2021. "Coordination Behavior in Mode Choice: Laboratory Study of Equilibrium Transformation and Selection," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3635-3656, October.
    15. Tanjim Hossain & Dylan Minor & John Morgan, 2011. "Competing Matchmakers: An Experimental Analysis," Management Science, INFORMS, vol. 57(11), pages 1913-1925, November.
    16. Farokhi, Farhad & Johansson, Karl H., 2015. "A piecewise-constant congestion taxing policy for repeated routing games," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 123-143.
    17. Rapoport, Amnon & Qi, Hang & Mak, Vincent & Gisches, Eyran J., 2019. "When a few undermine the whole: A class of social dilemmas in ridesharing," Journal of Economic Behavior & Organization, Elsevier, vol. 166(C), pages 125-137.
    18. Rapoport, Amnon & Gisches, Eyran J. & Daniel, Terry & Lindsey, Robin, 2014. "Pre-trip information and route-choice decisions with stochastic travel conditions: Experiment," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 154-172.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:not:notcdx:2007-05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jose V Guinot Saporta (email available below). General contact details of provider: https://edirc.repec.org/data/cdnotuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.