IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v42y2008i10p873-889.html
   My bibliography  Save this article

Vickrey's model of traffic congestion discretized

Author

Listed:
  • Otsubo, Hironori
  • Rapoport, Amnon

Abstract

Vickrey's seminal analysis of urban traffic congestion assumes a continuum of commuters acting selfishly and a continuous strategy space. We propose a discrete version of his model that assumes a finite number of commuters and a discrete strategy space. We then present an algorithm for numerically computing a symmetric mixed-strategy equilibrium solution for the discrete model and compare it with the deterministic equilibrium solution for the continuous model due to Arnott et al. [Arnott, R., de Palma, A., Lindsey, R., 1990. Economics of a bottleneck. Journal of Urban Economics 27(1), 111-130]. We report significant discrepancies in travel costs and distributions of departure time between the two solutions that slowly decrease as the number of commuters increases. We then propose and exemplify two extensions of the discrete model that allow for an uncertain number of commuters and an alternative mode of transportation not subject to congestion.

Suggested Citation

  • Otsubo, Hironori & Rapoport, Amnon, 2008. "Vickrey's model of traffic congestion discretized," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 873-889, December.
  • Handle: RePEc:eee:transb:v:42:y:2008:i:10:p:873-889
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(08)00044-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Groves, Theodore & Ledyard, John O, 1977. "Optimal Allocation of Public Goods: A Solution to the "Free Rider" Problem," Econometrica, Econometric Society, vol. 45(4), pages 783-809, May.
    2. Anthony Ziegelmeyer & Frédéric Koessler & Kene Boun My & Laurent Denant-Boèmont, 2008. "Road Traffic Congestion and Public Information: An Experimental Investigation," Journal of Transport Economics and Policy, University of Bath, vol. 42(1), pages 43-82, January.
    3. Xi Zou & David Levinson, 2006. "A Multi-Agent Congestion and Pricing Model," Working Papers 200605, University of Minnesota: Nexus Research Group.
    4. Baye, Michael R & Kovenock, Dan & de Vries, Casper G, 1994. "The Solution to the Tullock Rent-Seeking Game When R Is Greater Than 2: Mixed-Strategy Equilibria and Mean Dissipation Rates," Public Choice, Springer, vol. 81(3-4), pages 363-380, December.
    5. Rapoport, Amnon & Stein, William E. & Parco, James E. & Seale, Darryl A., 2004. "Equilibrium play in single-server queues with endogenously determined arrival times," Journal of Economic Behavior & Organization, Elsevier, vol. 55(1), pages 67-91, September.
    6. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1993. "A Structural Model of Peak-Period Congestion: A Traffic Bottleneck with Elastic Demand," American Economic Review, American Economic Association, vol. 83(1), pages 161-179, March.
    7. J. Swarthout & Mark Walker, 2009. "Discrete implementation of the Groves–Ledyard mechanism," Review of Economic Design, Springer;Society for Economic Design, vol. 13(1), pages 101-114, April.
    8. Daniel, Joseph I., 2001. "Distributional Consequences of Airport Congestion Pricing," Journal of Urban Economics, Elsevier, vol. 50(2), pages 230-258, September.
    9. Kenneth Button & Erik Verhoef (ed.), 1998. "Road Pricing, Traffic Congestion and the Environment," Books, Edward Elgar Publishing, number 940.
    10. Smith, M. J., 1983. "The existence and calculation of traffic equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 17(4), pages 291-303, August.
    11. Baye, M.R. & Kovenock, D. & De Vries, C.G., 1993. "The Solution to the Tullock Rent-Seeking Game when R > 2: Mixed Strategy Equilibria and Mean Dissipation Rates," Papers 10-93-9, Pennsylvania State - Department of Economics.
    12. Darryl Seale & James Parco & William Stein & Amnon Rapoport, 2005. "Joining a Queue or Staying Out: Effects of Information Structure and Service Time on Arrival and Staying Out Decisions," Experimental Economics, Springer;Economic Science Association, vol. 8(2), pages 117-144, June.
    13. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    14. Martin J. Osborne & Ariel Rubinstein, 1994. "A Course in Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262650401, December.
    15. A. Glazer & R. Hassin, 1987. "Equilibrium Arrivals in Queues with Bulk Service at Scheduled Times," Transportation Science, INFORMS, vol. 21(4), pages 273-278, November.
    16. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1990. "Economics of a bottleneck," Journal of Urban Economics, Elsevier, vol. 27(1), pages 111-130, January.
    17. Carlos F. Daganzo, 1985. "The Uniqueness of a Time-dependent Equilibrium Distribution of Arrivals at a Single Bottleneck," Transportation Science, INFORMS, vol. 19(1), pages 29-37, February.
    18. Levinson, David, 2005. "Micro-foundations of congestion and pricing: A game theory perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 691-704.
    19. Stein, William E. & Rapoport, Amnon & Seale, Darryl A. & Zhang, Hongtao & Zwick, Rami, 2007. "Batch queues with choice of arrivals: Equilibrium analysis and experimental study," Games and Economic Behavior, Elsevier, vol. 59(2), pages 345-363, May.
    20. Roger B. Myerson, 1998. "Population uncertainty and Poisson games," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(3), pages 375-392.
    21. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1999. "Information and time-of-usage decisions in the bottleneck model with stochastic capacity and demand," European Economic Review, Elsevier, vol. 43(3), pages 525-548, March.
    22. Partha Dasgupta & Eric Maskin, 1986. "The Existence of Equilibrium in Discontinuous Economic Games, I: Theory," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(1), pages 1-26.
    23. Chris Hendrickson & George Kocur, 1981. "Schedule Delay and Departure Time Decisions in a Deterministic Model," Transportation Science, INFORMS, vol. 15(1), pages 62-77, February.
    24. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    25. Wilson, Paul W., 1988. "Wage variation resulting from staggered work hours," Journal of Urban Economics, Elsevier, vol. 24(1), pages 9-26, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Terry E. Daniel & Eyran J. Gisches & Amnon Rapoport, 2009. "Departure Times in Y-Shaped Traffic Networks with Multiple Bottlenecks," American Economic Review, American Economic Association, vol. 99(5), pages 2149-2176, December.
    2. Ravner, Liron & Haviv, Moshe & Vu, Hai L., 2016. "A strategic timing of arrivals to a linear slowdown processor sharing system," European Journal of Operational Research, Elsevier, vol. 255(2), pages 496-504.
    3. Platz, Trine Tornøe & Østerdal, Lars Peter, 2017. "The curse of the first-in–first-out queue discipline," Games and Economic Behavior, Elsevier, vol. 104(C), pages 165-176.
    4. Xiao, Feng & Shen, Wei & Michael Zhang, H., 2012. "The morning commute under flat toll and tactical waiting," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1346-1359.
    5. Garrouste, Christelle & Loi, Massimo, 2009. "Applications De La Theorie Des Jeux A L'Education: Pour Quels Types Et Niveaux D'Education, Quels Modeles, Quels Resultats? [Applications of Game Theory in Education - What Types and At What Levels," MPRA Paper 31825, University Library of Munich, Germany.
    6. Sakuma, Yutaka & Masuyama, Hiroyuki & Fukuda, Emiko, 2020. "A discrete-time single-server Poisson queueing game: Equilibria simulated by an agent-based model," European Journal of Operational Research, Elsevier, vol. 283(1), pages 253-264.
    7. Hugo E. Silva & Robin Lindsey & André de Palma & Vincent A. C. van den Berg, 2017. "On the Existence and Uniqueness of Equilibrium in the Bottleneck Model with Atomic Users," Transportation Science, INFORMS, vol. 51(3), pages 863-881, August.
    8. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    9. Ravner, Liron, 2014. "Equilibrium arrival times to a queue with order penalties," European Journal of Operational Research, Elsevier, vol. 239(2), pages 456-468.
    10. Moshe Haviv & Liron Ravner, 2014. "Strategic timing of arrivals to a finite queue multi-server loss system," Discussion Paper Series dp675, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    2. Xiao, Feng & Shen, Wei & Michael Zhang, H., 2012. "The morning commute under flat toll and tactical waiting," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1346-1359.
    3. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
    4. Ramadurai, Gitakrishnan & Ukkusuri, Satish V. & Zhao, Jinye & Pang, Jong-Shi, 2010. "Linear complementarity formulation for single bottleneck model with heterogeneous commuters," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 193-214, February.
    5. Ren-Yong Guo & Hai Yang & Hai-Jun Huang, 2018. "Are We Really Solving the Dynamic Traffic Equilibrium Problem with a Departure Time Choice?," Transportation Science, INFORMS, vol. 52(3), pages 603-620, June.
    6. Small, Kenneth A., 2015. "The bottleneck model: An assessment and interpretation," Economics of Transportation, Elsevier, vol. 4(1), pages 110-117.
    7. Sun, Xiaoyan & Han, Xiao & Bao, Jian-Zhang & Jiang, Rui & Jia, Bin & Yan, Xiaoyong & Zhang, Boyu & Wang, Wen-Xu & Gao, Zi-You, 2017. "Decision dynamics of departure times: Experiments and modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 74-82.
    8. Peer, Stefanie & Verhoef, Erik T., 2013. "Equilibrium at a bottleneck when long-run and short-run scheduling preferences diverge," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 12-27.
    9. Hugo E. Silva & Robin Lindsey & André de Palma & Vincent A. C. van den Berg, 2017. "On the Existence and Uniqueness of Equilibrium in the Bottleneck Model with Atomic Users," Transportation Science, INFORMS, vol. 51(3), pages 863-881, August.
    10. Moshe Haviv & Liron Ravner, 2021. "A survey of queueing systems with strategic timing of arrivals," Queueing Systems: Theory and Applications, Springer, vol. 99(1), pages 163-198, October.
    11. Rapoport, Amnon & Stein, William E. & Mak, Vincent & Zwick, Rami & Seale, Darryl A., 2010. "Endogenous arrivals in batch queues with constant or variable capacity," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1166-1185, December.
    12. Ling-Ling Xiao & Hai-Jun Huang & Ronghui Liu, 2015. "Congestion Behavior and Tolls in a Bottleneck Model with Stochastic Capacity," Transportation Science, INFORMS, vol. 49(1), pages 46-65, February.
    13. Terry E. Daniel & Eyran J. Gisches & Amnon Rapoport, 2009. "Departure Times in Y-Shaped Traffic Networks with Multiple Bottlenecks," American Economic Review, American Economic Association, vol. 99(5), pages 2149-2176, December.
    14. Yu Nie, 2015. "A New Tradable Credit Scheme for the Morning Commute Problem," Networks and Spatial Economics, Springer, vol. 15(3), pages 719-741, September.
    15. Mogens Fosgerau & Kenneth Small, 2017. "Endogenous Scheduling Preferences And Congestion," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(2), pages 585-615, May.
    16. Chen, Hongyu & Liu, Yang & Nie, Yu (Marco), 2015. "Solving the step-tolled bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 210-229.
    17. André de Palma & Mogens Fosgerau, 2011. "Dynamic Traffic Modeling," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 9, Edward Elgar Publishing.
    18. Takayama, Yuki, 2015. "Bottleneck congestion and distribution of work start times: The economics of staggered work hours revisited," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 830-847.
    19. Robin Lindsey, 2004. "Existence, Uniqueness, and Trip Cost Function Properties of User Equilibrium in the Bottleneck Model with Multiple User Classes," Transportation Science, INFORMS, vol. 38(3), pages 293-314, August.
    20. Jesper Breinbjerg & Alexander Sebald & Lars Peter Østerdal, 2016. "Strategic behavior and social outcomes in a bottleneck queue: experimental evidence," Review of Economic Design, Springer;Society for Economic Design, vol. 20(3), pages 207-236, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:42:y:2008:i:10:p:873-889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.