IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v15y2017i2p223-246..html
   My bibliography  Save this article

Testing for Parameter Instability across Different Modeling Frameworks

Author

Listed:
  • Francesco Calvori
  • Drew Creal
  • Siem Jan Koopman
  • André Lucas

Abstract

We develop a new parameter instability test that generalizes the seminal ARCH-Lagrange Multiplier test of Engle (1982) for a constant variance against the alternative of autoregressive conditional heteroskedasticity to settings with nonlinear time-varying parameters and non-Gaussian distributions. We investigate the performance of the new test relative to both classic and recently proposed parameter instability tests, including tests against structural breaks and parameter-driven dynamics. We find that the recent test of Müller and Petalas (2010) performs best across a wide range of alternatives, particularly if parameter instability is slow. For time-varying parameters that exhibit more mean reversion, our new test has higher power. We provide an application to a heavily unbalanced panel of losses given default for US corporations from 1982 to 2010 and provide evidence of significant parameter instability in the parameters of a static beta distributed model.

Suggested Citation

  • Francesco Calvori & Drew Creal & Siem Jan Koopman & André Lucas, 2017. "Testing for Parameter Instability across Different Modeling Frameworks," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 223-246.
  • Handle: RePEc:oup:jfinec:v:15:y:2017:i:2:p:223-246.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbw008
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, January.
    2. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, Decembrie.
    3. Andrei Shleifer & Robert Vishny, 2011. "Fire Sales in Finance and Macroeconomics," Journal of Economic Perspectives, American Economic Association, vol. 25(1), pages 29-48, Winter.
    4. Shephard, Neil (ed.), 2005. "Stochastic Volatility: Selected Readings," OUP Catalogue, Oxford University Press, number 9780199257201.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cem Cakmakli & Yasin Simsek, 2023. "Bridging the Covid-19 Data and the Epidemiological Model using Time-Varying Parameter SIRD Model," Papers 2301.13692, arXiv.org.
    2. Carlo Campajola & Domenico Di Gangi & Fabrizio Lillo & Daniele Tantari, 2020. "Modelling time-varying interactions in complex systems: the Score Driven Kinetic Ising Model," Papers 2007.15545, arXiv.org, revised Aug 2021.
    3. Delle-Monache, Davide & De-Polis, Andrea & Petrella, Ivan, 2020. "Modelling and Forecasting Macroeconomic Downside Risk," EMF Research Papers 34, Economic Modelling and Forecasting Group.
    4. Harvey, Andrew & Thiele, Stephen, 2016. "Testing against changing correlation," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 575-589.
    5. Palumbo, D., 2021. "Testing and Modelling Time Series with Time Varying Tails," Cambridge Working Papers in Economics 2111, Faculty of Economics, University of Cambridge.
    6. Fuentes, Fernanda & Herrera, Rodrigo & Clements, Adam, 2023. "Forecasting extreme financial risk: A score-driven approach," International Journal of Forecasting, Elsevier, vol. 39(2), pages 720-735.
    7. F. Campigli & G. Bormetti & F. Lillo, 2022. "Measuring price impact and information content of trades in a time-varying setting," Papers 2212.12687, arXiv.org, revised Dec 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tommaso Proietti & Alessandra Luati, 2013. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362, Edward Elgar Publishing.
    2. F. Blasques & S. J. Koopman & A. Lucas, 2015. "Information-theoretic optimality of observation-driven time series models for continuous responses," Biometrika, Biometrika Trust, vol. 102(2), pages 325-343.
    3. Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Information Theoretic Optimality of Observation Driven Time Series Models," Tinbergen Institute Discussion Papers 14-046/III, Tinbergen Institute.
    4. Drew Creal & Siem Jan Koopman & André Lucas & Marcin Zamojski, 2015. "Generalized Autoregressive Method of Moments," Tinbergen Institute Discussion Papers 15-138/III, Tinbergen Institute, revised 06 Jul 2018.
    5. Francesco Calvori & Drew Creal & Siem Jan Koopman & Andre Lucas, 2014. "Testing for Parameter Instability in Competing Modeling Frameworks," Tinbergen Institute Discussion Papers 14-010/IV/DSF71, Tinbergen Institute.
    6. Blasques, Francisco & Koopman, Siem Jan & Łasak, Katarzyna & Lucas, André, 2016. "In-sample confidence bands and out-of-sample forecast bands for time-varying parameters in observation-driven models," International Journal of Forecasting, Elsevier, vol. 32(3), pages 875-887.
    7. Francisco Blasques & Siem Jan Koopman & Katarzyna Lasak & André Lucas, 2015. "In-Sample Bounds for Time-Varying Parameters of Observation Driven Models," Tinbergen Institute Discussion Papers 15-027/III, Tinbergen Institute, revised 07 Sep 2015.
    8. Mengheng Li & Siem Jan (S.J.) Koopman, 2018. "Unobserved Components with Stochastic Volatility in U.S. Inflation: Estimation and Signal Extraction," Tinbergen Institute Discussion Papers 18-027/III, Tinbergen Institute.
    9. Davide Delle Monache & Ivan Petrella, 2014. "Adaptive Models and Heavy Tails," Working Papers 720, Queen Mary University of London, School of Economics and Finance.
    10. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    11. Michele Caivano & Andrew Harvey, 2014. "Time-series models with an EGB2 conditional distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 558-571, November.
    12. Jouchi Nakajima, 2011. "Time-Varying Parameter VAR Model with Stochastic Volatility: An Overview of Methodology and Empirical Applications," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 29, pages 107-142, November.
    13. Michele Caivano & Andrew Harvey & Alessandra Luati, 2016. "Robust time series models with trend and seasonal components," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(1), pages 99-120, March.
    14. Borus Jungbacker & Siem Jan Koopman, 2005. "On Importance Sampling for State Space Models," Tinbergen Institute Discussion Papers 05-117/4, Tinbergen Institute.
    15. Sucarrat, Genaro & Grønneberg, Steffen, 2016. "Models of Financial Return With Time-Varying Zero Probability," MPRA Paper 68931, University Library of Munich, Germany.
    16. Siem Jan Koopman & Rutger Lit & Thuy Minh Nguyen, 2012. "Fast Efficient Importance Sampling by State Space Methods," Tinbergen Institute Discussion Papers 12-008/4, Tinbergen Institute, revised 16 Oct 2014.
    17. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic Volatility with Leverage: Fast Likelihood Inference," CIRJE F-Series CIRJE-F-297, CIRJE, Faculty of Economics, University of Tokyo.
    18. Flury, Thomas & Shephard, Neil, 2011. "Bayesian Inference Based Only On Simulated Likelihood: Particle Filter Analysis Of Dynamic Economic Models," Econometric Theory, Cambridge University Press, vol. 27(05), pages 933-956, October.

    More about this item

    Keywords

    credit risk; generalized autoregressive score model; observation-driven and parameter-driven models; regime switching; structural breaks; time-varying parameters;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:15:y:2017:i:2:p:223-246.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.