IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v45y2016i1p53-69.html
   My bibliography  Save this article

Semiparametric stochastic metafrontier efficiency of European manufacturing firms

Author

Listed:
  • Marijn Verschelde
  • Michel Dumont
  • Glenn Rayp
  • Bruno Merlevede

Abstract

In this paper a semiparametric stochastic metafrontier approach is used to obtain insight into the performance of manufacturing firms in Europe. We differ from standard TFP studies at the firm level as we simultaneously allow for inefficiency , noise and do not impose a functional form on the input–output relation. Using AMADEUS firm-level data covering ten manufacturing sectors from seven EU15 countries, (1) we document substantial and persistent differences in performance (with Belgium and Germany as benchmark countries and Spain lagging behind) and a wide technology gap, (2) we confirm the absence of convergence in TFP between the seven selected countries, (3) we highlight a more pronounced technology gap for smaller firms. Copyright Springer Science+Business Media New York 2016

Suggested Citation

  • Marijn Verschelde & Michel Dumont & Glenn Rayp & Bruno Merlevede, 2016. "Semiparametric stochastic metafrontier efficiency of European manufacturing firms," Journal of Productivity Analysis, Springer, vol. 45(1), pages 53-69, February.
  • Handle: RePEc:kap:jproda:v:45:y:2016:i:1:p:53-69
    DOI: 10.1007/s11123-015-0458-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11123-015-0458-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-015-0458-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Martins-Filho, Carlos & Yao, Feng, 2007. "Nonparametric frontier estimation via local linear regression," Journal of Econometrics, Elsevier, vol. 141(1), pages 283-319, November.
    2. Andrew B. Bernard & Jonathan Eaton & J. Bradford Jensen & Samuel Kortum, 2003. "Plants and Productivity in International Trade," American Economic Review, American Economic Association, vol. 93(4), pages 1268-1290, September.
    3. Andrew B. Bernard & Stephen J. Redding & Peter K. Schott, 2009. "Products and Productivity," Scandinavian Journal of Economics, Wiley Blackwell, vol. 111(4), pages 681-709, December.
    4. Jan De Loecker, 2011. "Product Differentiation, Multiproduct Firms, and Estimating the Impact of Trade Liberalization on Productivity," Econometrica, Econometric Society, vol. 79(5), pages 1407-1451, September.
    5. Léopold Simar & Valentin Zelenyuk, 2011. "Stochastic FDH/DEA estimators for frontier analysis," Journal of Productivity Analysis, Springer, vol. 36(1), pages 1-20, August.
    6. Ilke Van Beveren, 2012. "Total Factor Productivity Estimation: A Practical Review," Journal of Economic Surveys, Wiley Blackwell, vol. 26(1), pages 98-128, February.
    7. Chad Syverson, 2011. "What Determines Productivity?," Journal of Economic Literature, American Economic Association, vol. 49(2), pages 326-365, June.
    8. Klette, Tor Jakob & Griliches, Zvi, 1996. "The Inconsistency of Common Scale Estimators When Output Prices Are Unobserved and Endogenous," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(4), pages 343-361, July-Aug..
    9. Carlos Martins-Filho & Feng Yao, 2015. "Semiparametric Stochastic Frontier Estimation via Profile Likelihood," Econometric Reviews, Taylor & Francis Journals, vol. 34(4), pages 413-451, April.
    10. Léopold Simar, 2007. "How to improve the performances of DEA/FDH estimators in the presence of noise?," Journal of Productivity Analysis, Springer, vol. 28(3), pages 183-201, December.
    11. Fried, Harold O. & Lovell, C. A. Knox & Schmidt, Shelton S. (ed.), 2008. "The Measurement of Productive Efficiency and Productivity Growth," OUP Catalogue, Oxford University Press, number 9780195183528.
    12. Eric Bartelsman & John Haltiwanger & Stefano Scarpetta, 2009. "Measuring and Analyzing Cross-country Differences in Firm Dynamics," NBER Chapters, in: Producer Dynamics: New Evidence from Micro Data, pages 15-76, National Bureau of Economic Research, Inc.
    13. Thierry Mayer & Gianmarco Ottaviano, 2008. "The Happy Few: The Internationalisation of European Firms," Intereconomics: Review of European Economic Policy, Springer;ZBW - Leibniz Information Centre for Economics;Centre for European Policy Studies (CEPS), vol. 43(3), pages 135-148, May.
    14. Murray D. Smith, 2008. "Stochastic frontier models with dependent error components," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 172-192, March.
    15. Lucia Foster & John Haltiwanger & Chad Syverson, 2008. "Reallocation, Firm Turnover, and Efficiency: Selection on Productivity or Profitability?," American Economic Review, American Economic Association, vol. 98(1), pages 394-425, March.
    16. Teresa Serra & Barry Goodwin, 2009. "The efficiency of Spanish arable crop organic farms, a local maximum likelihood approach," Journal of Productivity Analysis, Springer, vol. 31(2), pages 113-124, April.
    17. Bruno Merlevede & Matthijs De Zwaan & Karolien Lenaerts & Victoria Purice, 2015. "Multinational Networks, Domestic,and Foreign Firms in Europe," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 15/900, Ghent University, Faculty of Economics and Business Administration.
    18. Bjurek, Hans, 1996. " The Malmquist Total Factor Productivity Index," Scandinavian Journal of Economics, Wiley Blackwell, vol. 98(2), pages 303-313, June.
    19. Ku-Hsieh Chen & Hao-Yen Yang, 2011. "A cross-country comparison of productivity growth using the generalised metafrontier Malmquist productivity index: with application to banking industries in Taiwan and China," Journal of Productivity Analysis, Springer, vol. 35(3), pages 197-212, June.
    20. Park, Byeong U. & Simar, Leopold & Zelenyuk, Valentin, 2010. "Local maximum likelihood techniques with categorical data," LIDAM Discussion Papers ISBA 2010052, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    21. Laia Castany & Enrique Lopez-Bazo & Rosina Moreno, 2007. "Do innovation and human capital explain the productivity gap between small and large firms?," IREA Working Papers 200716, University of Barcelona, Research Institute of Applied Economics, revised Nov 2007.
    22. Mark Doms & Eric J. Bartelsman, 2000. "Understanding Productivity: Lessons from Longitudinal Microdata," Journal of Economic Literature, American Economic Association, vol. 38(3), pages 569-594, September.
    23. Epure, Mircea & Kerstens, Kristiaan & Prior, Diego, 2011. "Technology-based total factor productivity and benchmarking: New proposals and an application," Omega, Elsevier, vol. 39(6), pages 608-619, December.
    24. Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2008. "Local likelihood estimation of truncated regression and its partial derivatives: Theory and application," Journal of Econometrics, Elsevier, vol. 146(1), pages 185-198, September.
    25. Charles R. Hulten, 2000. "Total Factor Productivity: A Short Biography," NBER Working Papers 7471, National Bureau of Economic Research, Inc.
    26. W.A. Barnett & J.M. Binner, 2004. "The Global Properties of the Minflex Laurent, Generalized Leontief, and Translog Flexible Functional Forms," Contributions to Economic Analysis, in: Functional Structure and Approximation in Econometrics, pages 79-97, Emerald Group Publishing Limited.
    27. Hayfield, Tristen & Racine, Jeffrey S., 2008. "Nonparametric Econometrics: The np Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i05).
    28. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    29. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    30. Xiaohong Chen & Norman R. Swanson (ed.), 2013. "Recent Advances and Future Directions in Causality, Prediction, and Specification Analysis," Springer Books, Springer, edition 127, number 978-1-4614-1653-1, June.
    31. Ackerberg, Daniel & Caves, Kevin & Frazer, Garth, 2006. "Structural identification of production functions," MPRA Paper 38349, University Library of Munich, Germany.
    32. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    33. Wilson, Paul W., 2008. "FEAR: A software package for frontier efficiency analysis with R," Socio-Economic Planning Sciences, Elsevier, vol. 42(4), pages 247-254, December.
    34. Dall'Olio, Andrea & Iootty, Mariana & Kanehira, Naoto & Saliola, Federica, 2013. "Productivity growth in Europe," Policy Research Working Paper Series 6425, The World Bank.
    35. Daniel J. Henderson & Chris Papageorgiou & Christopher F. Parmeter, 2012. "Growth Empirics without Parameters," Economic Journal, Royal Economic Society, vol. 122(559), pages 125-154, March.
    36. Marcus Asplund & Volker Nocke, 2006. "Firm Turnover in Imperfectly Competitive Markets -super-1," Review of Economic Studies, Oxford University Press, vol. 73(2), pages 295-327.
    37. Marc J. Melitz, 2003. "The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity," Econometrica, Econometric Society, vol. 71(6), pages 1695-1725, November.
    38. Aragon, Y. & Daouia, A. & Thomas-Agnan, C., 2005. "Nonparametric Frontier Estimation: A Conditional Quantile-Based Approach," Econometric Theory, Cambridge University Press, vol. 21(2), pages 358-389, April.
    39. Carlo Altomonte & Tommaso Aquilante & Gianmarco Ottaviano, . "The triggers of competitiveness- The EFIGE cross-country report," Blueprints, Bruegel, number 738, December.
    40. Barnett, William A. & Lee, Yul W. & Wolfe, Michael D., 1985. "The three-dimensional global properties of the minflex laurent, generalized leontief, and translog flexible functional forms," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 3-31.
    41. David Sondermann, 2014. "Productivity in the euro area: any evidence of convergence?," Empirical Economics, Springer, vol. 47(3), pages 999-1027, November.
    42. Dong-hyun Oh & Jeong-dong Lee, 2010. "A metafrontier approach for measuring Malmquist productivity index," Empirical Economics, Springer, vol. 38(1), pages 47-64, February.
    43. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    44. Subal Kumbhakar & Efthymios Tsionas, 2008. "Scale and efficiency measurement using a semiparametric stochastic frontier model: evidence from the U.S. commercial banks," Empirical Economics, Springer, vol. 34(3), pages 585-602, June.
    45. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    46. Kai Sun, 2015. "Constrained nonparametric estimation of input distance function," Journal of Productivity Analysis, Springer, vol. 43(1), pages 85-97, February.
    47. George E. Battese & D. S. Prasada Rao, 2002. "Technology Gap, Efficiency, and a Stochastic Metafrontier Function," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 1(2), pages 87-93, August.
    48. W.A. Barnett, 2004. "The Minflex Laurent Translog Flexible Functional Form," Contributions to Economic Analysis, in: Functional Structure and Approximation in Econometrics, pages 99-110, Emerald Group Publishing Limited.
    49. Massimo Del Gatto & Adriana Di Liberto & Carmelo Petraglia, 2011. "Measuring Productivity," Journal of Economic Surveys, Wiley Blackwell, vol. 25(5), pages 952-1008, December.
    50. Morrison, Catherine J, 1988. "Quasi-Fixed Inputs in U.S. and Japanese Manufacturing: A Generalized Leontief Restricted Cost Function Approach," The Review of Economics and Statistics, MIT Press, vol. 70(2), pages 275-287, May.
    51. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," Review of Economic Studies, Oxford University Press, vol. 70(2), pages 317-341.
    52. Adonis Yatchew, 1998. "Nonparametric Regression Techniques in Economics," Journal of Economic Literature, American Economic Association, vol. 36(2), pages 669-721, June.
    53. Kumbhakar, Subal C. & Park, Byeong U. & Simar, Leopold & Tsionas, Efthymios G., 2007. "Nonparametric stochastic frontiers: A local maximum likelihood approach," Journal of Econometrics, Elsevier, vol. 137(1), pages 1-27, March.
    54. Sun, Kai & Kumbhakar, Subal C., 2013. "Semiparametric smooth-coefficient stochastic frontier model," Economics Letters, Elsevier, vol. 120(2), pages 305-309.
    55. Johannes Van Biesebroeck, 2007. "Robustness Of Productivity Estimates," Journal of Industrial Economics, Wiley Blackwell, vol. 55(3), pages 529-569, September.
    56. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
    57. CompNet Task Force, 2014. "Micro-based evidence of EU competitiveness: The CompNet database," Working Paper Research 253, National Bank of Belgium.
    58. Timothy Dunne & J. Bradford Jensen & Mark J. Roberts, 2009. "Producer Dynamics: New Evidence from Micro Data," NBER Books, National Bureau of Economic Research, Inc, number dunn05-1, October.
    59. Daniel J. Henderson & Subal C. Kumbhakar, 2006. "Public and Private Capital Productivity Puzzle: A Nonparametric Approach," Southern Economic Journal, John Wiley & Sons, vol. 73(1), pages 219-232, July.
    60. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    61. Timo Kuosmanen & Mika Kortelainen, 2012. "Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints," Journal of Productivity Analysis, Springer, vol. 38(1), pages 11-28, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Qianying & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2020. "Metafrontier productivity indices: Questioning the common convexification strategy," European Journal of Operational Research, Elsevier, vol. 283(2), pages 737-747.
    2. Ang, Frederic & Kerstens, Pieter Jan, 2020. "A superlative indicator for the Luenberger-Hicks-Moorsteen productivity indicator: Theory and application," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1161-1173.
    3. Michel Dumont & Glenn Rayp & Marijn Verschelde & Bruno Merlevede, 2016. "The contribution of start-ups and young firms to industry-level efficiency growth," Applied Economics, Taylor & Francis Journals, vol. 48(59), pages 5786-5801, December.
    4. Frederic Ang & Pieter Jan Kerstens, 2018. "Superlative approximation of the Luenberger-Hicks-Moorsteen productivity indicator: Theory and application," IFRO Working Paper 2018/10, University of Copenhagen, Department of Food and Resource Economics.
    5. Themann, Michael & Koch, Nicolas, 2021. "Catching up and falling behind: Cross-country evidence on the impact of the EU ETS on firm productivity," Ruhr Economic Papers 904, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    6. Pinar Celikkol Geylani & Magdalena Kapelko & Spiro E. Stefanou, 2021. "Dynamic productivity change differences between global and non-global firms: a firm-level application to the U.S. food and beverage industries," Operational Research, Springer, vol. 21(2), pages 901-923, June.
    7. Kerstens, Kristiaan & O’Donnell, Christopher & Van de Woestyne, Ignace, 2019. "Metatechnology frontier and convexity: A restatement," European Journal of Operational Research, Elsevier, vol. 275(2), pages 780-792.
    8. Margareta Gardijan & Zrinka Lukač, 2018. "Measuring the relative efficiency of the food and drink industry in the chosen EU countries using the data envelopment analysis with missing data," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 695-713, September.
    9. Le, Viet & Vu, Xuan-Binh (Benjamin) & Nghiem, Son, 2018. "Technical efficiency of small and medium manufacturing firms in Vietnam: A stochastic meta-frontier analysis," Economic Analysis and Policy, Elsevier, vol. 59(C), pages 84-91.
    10. Walheer, Barnabé, 2018. "Aggregation of metafrontier technology gap ratios: the case of European sectors in 1995–2015," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1013-1026.
    11. Lee, Chi-Chuan & Huang, Tai-Hsin, 2017. "Cost efficiency and technological gap in Western European banks: A stochastic metafrontier analysis," International Review of Economics & Finance, Elsevier, vol. 48(C), pages 161-178.
    12. Zdeňka Náglová & Marie Šimpachová Pechrová, 2019. "Are Wine Producers With Subsidies More Technically Efficient?," Central European Business Review, Prague University of Economics and Business, vol. 2019(1), pages 1-14.
    13. Michel Dumont & Chantal Kegels, 2016. "Working Paper 06-16 - Young Firms and Industry Dynamics in Belgium," Working Papers 1606, Federal Planning Bureau, Belgium.
    14. Ching-Ren Chiu & Ming-Chung Chang & Jin-Li Hu, 2022. "Energy intensity improvement and energy productivity changes: an analysis of BRICS and G7 countries," Journal of Productivity Analysis, Springer, vol. 57(3), pages 297-311, June.
    15. Cherchye, Laurens & De Rock, Bram & Kerstens, Pieter Jan, 2018. "Production with storable and durable inputs: Nonparametric analysis of intertemporal efficiency," European Journal of Operational Research, Elsevier, vol. 270(2), pages 498-513.
    16. Koch, Nicolas & Themann, Michael, 2022. "Catching up and falling behind: Cross-country evidence on the impact of the EU ETS on firm productivity," Resource and Energy Economics, Elsevier, vol. 69(C).
    17. Pierluigi Toma, 2020. "Size and productivity: a conditional approach for Italian pharmaceutical sector," Journal of Productivity Analysis, Springer, vol. 54(1), pages 1-12, August.
    18. Roets, Bart & Verschelde, Marijn & Christiaens, Johan, 2018. "Multi-output efficiency and operational safety: An analysis of railway traffic control centre performance," European Journal of Operational Research, Elsevier, vol. 271(1), pages 224-237.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massimo Del Gatto & Adriana Di Liberto & Carmelo Petraglia, 2011. "Measuring Productivity," Journal of Economic Surveys, Wiley Blackwell, vol. 25(5), pages 952-1008, December.
    2. Laurens Cherchye & Thomas Demuynck & Bram De Rock & Marijn Verschelde, 2018. "Nonparametric Production Analysis with Unobserved Heterogeneity in Productivity," Working Papers ECARES 2018-25, ULB -- Universite Libre de Bruxelles.
    3. Gregory Corcos & Massimo Del Gatto & Giordano Mion & Gianmarco I.P. Ottaviano, 2012. "Productivity and Firm Selection: Quantifying the ‘New’ Gains from Trade," Economic Journal, Royal Economic Society, vol. 122(561), pages 754-798, June.
    4. Ulf Lewrick & Lukas Mohler & Rolf Weder, 2014. "When firms and industries matter: understanding the sources of productivity growth," BIS Working Papers 469, Bank for International Settlements.
    5. Rosario Crinò & Paolo Epifani, 2009. "Productivity, Quality and Export Behavior (Revised version of: Firm-Export Intensity and Productivity, September 2011)," Development Working Papers 271, Centro Studi Luca d'Agliano, University of Milano.
    6. Dobbelaere, Sabien & Kiyota, Kozo & Mairesse, Jacques, 2015. "Product and labor market imperfections and scale economies: Micro-evidence on France, Japan and the Netherlands," Journal of Comparative Economics, Elsevier, vol. 43(2), pages 290-322.
    7. Minegishi, Kota, 2013. "Explaining Production Heterogeneity By Contextual Environments: Two-Stage DEA Application to Technical Change Measurement," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150289, Agricultural and Applied Economics Association.
    8. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    9. Laurens Cherchye & Thomas Demuynck & Bram De Rock & Marijn Verschelde, 2018. "Nonparametric identification of unobserved technological heterogeneity in production," Working Paper Research 335, National Bank of Belgium.
    10. Florin Maican & Matilda Orth, 2017. "Productivity Dynamics and the Role of ‘Big-Box’ Entrants in Retailing," Journal of Industrial Economics, Wiley Blackwell, vol. 65(2), pages 397-438, June.
    11. Christopher F. Parmeter & Valentin Zelenyuk, 2019. "Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis," Operations Research, INFORMS, vol. 67(6), pages 1628-1658, November.
    12. Alvaro Garcia-Marin & Nico Voigtländer, 2019. "Exporting and Plant-Level Efficiency Gains: It's in the Measure," Journal of Political Economy, University of Chicago Press, vol. 127(4), pages 1777-1825.
    13. Marion Dovis, 2009. "Formulation et estimation des modèles de mesure de la productivité totale des facteurs : une étude sur un panel d'entreprises turques," Revue d'économie politique, Dalloz, vol. 119(6), pages 945-982.
    14. Tsionas, Mike G. & Polemis, Michael L., 2019. "On the estimation of total factor productivity: A novel Bayesian non-parametric approach," European Journal of Operational Research, Elsevier, vol. 277(3), pages 886-902.
    15. Flora Bellone & Patrick Musso & Lionel Nesta & Frederic Warzynski, 2016. "International trade and firm-level markups when location and quality matter," Journal of Economic Geography, Oxford University Press, vol. 16(1), pages 67-91.
    16. Jan De Loecker & Frederic Warzynski, 2012. "Markups and Firm-Level Export Status," American Economic Review, American Economic Association, vol. 102(6), pages 2437-2471, October.
    17. Jan De Loecker & Pinelopi K. Goldberg & Amit K. Khandelwal & Nina Pavcnik, 2016. "Prices, Markups, and Trade Reform," Econometrica, Econometric Society, vol. 84, pages 445-510, March.
    18. Chad Syverson, 2011. "What Determines Productivity?," Journal of Economic Literature, American Economic Association, vol. 49(2), pages 326-365, June.
    19. Mike Tsionas & Christopher F. Parmeter & Valentin Zelenyuk, 2021. "Bridging the Divide? Bayesian Artificial Neural Networks for Frontier Efficiency Analysis," CEPA Working Papers Series WP082021, School of Economics, University of Queensland, Australia.
    20. Maican, Florin & Orth, Matilda, 2015. "A dynamic analysis of entry regulations and productivity in retail trade," International Journal of Industrial Organization, Elsevier, vol. 40(C), pages 67-80.

    More about this item

    Keywords

    Productive efficiency; Metafrontier estimation; Semiparametric frontier; Kernel estimation; Stochastic frontier; Manufacturing; C14; D24; L25;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • L25 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Firm Performance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:45:y:2016:i:1:p:53-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.