IDEAS home Printed from https://ideas.repec.org/a/bla/jindec/v55y2007i3p529-569.html
   My bibliography  Save this article

Robustness Of Productivity Estimates

Author

Listed:
  • JOHANNES VAN BIESEBROECK

Abstract

Researchers interested in estimating productivity can choose from an array of methodologies, each with its strengths and weaknesses. We compare the robustness of five widely used techniques, two non‐parametric and three parametric: in order, (a) index numbers, (b) data envelopment analysis (DEA), (c) stochastic frontiers, (d) instrumental variables (GMM) and (e) semiparametric estimation. Using simulated samples of firms, we analyze the sensitivity of alternative methods to the way randomness is introduced in the data generating process. Three experiments are considered, introducing randomness via factor price heterogeneity, measurement error and differences in production technology respectively. When measurement error is small, index numbers are excellent for estimating productivity growth and are among the best for estimating productivity levels. DEA excels when technology is heterogeneous and returns to scale are not constant. When measurement or optimization errors are nonnegligible, parametric approaches are preferred. Ranked by the persistence of the productivity differentials between firms (in decreasing order), one should prefer the stochastic frontiers, GMM, or semiparametric estimation methods. The practical relevance of each experiment for applied researchers is discussed explicitly.

Suggested Citation

  • Johannes Van Biesebroeck, 2007. "Robustness Of Productivity Estimates," Journal of Industrial Economics, Wiley Blackwell, vol. 55(3), pages 529-569, September.
  • Handle: RePEc:bla:jindec:v:55:y:2007:i:3:p:529-569
    DOI: 10.1111/j.1467-6451.2007.00322.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-6451.2007.00322.x
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stephen Bond & Måns Söderbom, 2005. "Adjustment Costs and the Identification of Cobb Douglas Production Functions," Economics Papers 2005-W04, Economics Group, Nuffield College, University of Oxford.
    2. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    3. Richard Blundell & Stephen Bond, 2000. "GMM Estimation with persistent panel data: an application to production functions," Econometric Reviews, Taylor & Francis Journals, vol. 19(3), pages 321-340.
    4. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    5. Stephen Bond & Måns Söderbom, 2005. "Adjustment Costs and the Identification of Cobb Douglas Production Functions," Economics Series Working Papers 2005-W04, University of Oxford, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petrick, Martin & Kloss, Mathias, 2013. "Identifying Factor Productivity from Micro-data: The case of EU agriculture," Working papers 144004, Factor Markets, Centre for European Policy Studies.
    2. Dobbelaere, Sabien & Kiyota, Kozo & Mairesse, Jacques, 2015. "Product and labor market imperfections and scale economies: Micro-evidence on France, Japan and the Netherlands," Journal of Comparative Economics, Elsevier, vol. 43(2), pages 290-322.
    3. Bruno Merlevede & Angelos Theodorakopoulos, 2018. "Productivity Effects of Internationalisation Through the Domestic Supply Chain: Evidence from Europe," Working Papers of VIVES - Research Centre for Regional Economics 627689, KU Leuven, Faculty of Economics and Business (FEB), VIVES - Research Centre for Regional Economics.
    4. Göbel, Christian & Zwick, Thomas, 2009. "Age and productivity: evidence from linked employer employee data," ZEW Discussion Papers 09-020, ZEW - Leibniz Centre for European Economic Research.
    5. Simon Pröll & Giannis Karagiannis & Klaus Salhofer, 2019. "Advertising and Markups: The Case of the German Brewing Industry," Working Papers 732019, Institute for Sustainable Economic Development, Department of Economics and Social Sciences, University of Natural Resources and Life Sciences, Vienna.
    6. repec:zbw:iamodp:271870 is not listed on IDEAS
    7. Baptist, Simon & Teal, Francis J., 2015. "Why Do South Korean Firms Produce So Much More Output per Worker than Ghanaian Ones?," IZA Discussion Papers 9157, Institute of Labor Economics (IZA).
    8. Yuriy Gorodnichenko, 2007. "Using Firm Optimization to Evaluate and Estimate Returns to Scale," NBER Working Papers 13666, National Bureau of Economic Research, Inc.
    9. Bruno Merlevede & Angelos Theodorakopoulos, 2016. "Productivity effects from inter-industry offshoring and inshoring: Firm-level evidence from Belgium," FIW Working Paper series 165, FIW.
    10. Nikita Céspedes & María E. Aquije & Alan Sánchez & Rafael Vera Tudela, 2016. "Productividad sectorial en el Perú: un análisis a nivel de firmas," Chapters of Books, in: Nikita Céspedes & Pablo Lavado & Nelson Ramírez Rondán (ed.),Productividad en el Perú: medición, determinantes e implicancias, edition 1, volume 1, chapter 3, pages 70-92, Fondo Editorial, Universidad del Pacífico.
    11. Audra Bowlus & Yuet-Yee Linda Wong, 2020. "The Millenials' Transition from School-to-Work," University of Western Ontario, Centre for Human Capital and Productivity (CHCP) Working Papers 20201, University of Western Ontario, Centre for Human Capital and Productivity (CHCP).
    12. Hu, Yingyao & Huang, Guofang & Sasaki, Yuya, 2020. "Estimating production functions with robustness against errors in the proxy variables," Journal of Econometrics, Elsevier, vol. 215(2), pages 375-398.
    13. Stephan Kampelmann & Benoît Mahy & François Rycx & Guillaume Vermeylen, 2016. "Who is your perfect match? Educational norms, educational mismatch and firm profitability," Working Papers CEB 16-050, ULB -- Universite Libre de Bruxelles.
    14. François Rycx & Yves Saks & Ilan Tojerow, 2015. "Does Education Raise Productivity and Wages Equally ?The Moderating Roles of Age, Gender and Industry," DULBEA Working Papers 15-02, ULB -- Universite Libre de Bruxelles.
    15. Amoroso, S., 2013. "Heterogeneity of innovative, collaborative, and productive firm-level processes," Other publications TiSEM f5784a49-7053-401d-855d-1, Tilburg University, School of Economics and Management.
    16. Jinhyung Lee & Jeffrey S. McCullough & Robert J. Town, 2013. "The impact of health information technology on hospital productivity," RAND Journal of Economics, RAND Corporation, vol. 44(3), pages 545-568, September.
    17. Romina Giuliano & Stephan Kampelmann & Benoît Mahy & François Rycx, 2017. "Short Notice, Big Difference? The Effect of Temporary Employment on Firm Competitiveness across Sectors," British Journal of Industrial Relations, London School of Economics, vol. 55(2), pages 421-449, June.
    18. Pierpaolo Parrotta & Dario Pozzoli, 2012. "The effect of learning by hiring on productivity," RAND Journal of Economics, RAND Corporation, vol. 43(1), pages 167-185, March.
    19. Bournakis, Ioannis & Mallick, Sushanta, 2018. "TFP estimation at firm level: The fiscal aspect of productivity convergence in the UK," Economic Modelling, Elsevier, vol. 70(C), pages 579-590.
    20. Dobbelaere, Sabien & Mairesse, Jacques, 2018. "Comparing micro-evidence on rent sharing from two different econometric models," Labour Economics, Elsevier, vol. 52(C), pages 18-26.
    21. Almeida, Rita & Carneiro, Pedro, 2009. "The return to firm investments in human capital," Labour Economics, Elsevier, vol. 16(1), pages 97-106, January.

    More about this item

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jindec:v:55:y:2007:i:3:p:529-569. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0022-1821 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.