IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

ROBUSTNESS OF PRODUCTIVITY ESTIMATES -super-*

  • JOHANNES VAN BIESEBROECK

Researchers interested in estimating productivity can choose from an array of methodologies, each with its strengths and weaknesses. We compare the robustness of five widely used techniques, two non-parametric and three parametric: in order, (a) index numbers, (b) data envelopment analysis (DEA), (c) stochastic frontiers, (d) instrumental variables (GMM) and (e) semiparametric estimation. Using simulated samples of firms, we analyze the sensitivity of alternative methods to the way randomness is introduced in the data generating process. Three experiments are considered, introducing randomness via factor price heterogeneity, measurement error and differences in production technology respectively. When measurement error is small, index numbers are excellent for estimating productivity growth and are among the best for estimating productivity levels. DEA excels when technology is heterogeneous and returns to scale are not constant. When measurement or optimization errors are nonnegligible, parametric approaches are preferred. Ranked by the persistence of the productivity differentials between firms (in decreasing order), one should prefer the stochastic frontiers, GMM, or semiparametric estimation methods. The practical relevance of each experiment for applied researchers is discussed explicitly. Copyright 2007 Blackwell Publishing Ltd..

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-6451.2007.00322.x
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Wiley Blackwell in its journal The Journal of Industrial Economics.

Volume (Year): 55 (2007)
Issue (Month): 3 (09)
Pages: 529-569

as
in new window

Handle: RePEc:bla:jindec:v:55:y:2007:i:3:p:529-569
Contact details of provider: Web page: http://www.blackwellpublishing.com/journal.asp?ref=0022-1821

Order Information: Web: http://www.blackwellpublishing.com/subs.asp?ref=0022-1821

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Richard Blundell & Steve Bond, 1999. "GMM estimation with persistent panel data: an application to production functions," IFS Working Papers W99/04, Institute for Fiscal Studies.
  2. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
  3. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bla:jindec:v:55:y:2007:i:3:p:529-569. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.