IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v126y2017icp153-161.html
   My bibliography  Save this article

Natural resources utilization efficiency under the influence of green technological innovation

Author

Listed:
  • Miao, Chenglin
  • Fang, Debin
  • Sun, Liyan
  • Luo, Qiaoling

Abstract

Innovation is the fundamental force to drive economic and social development, green technological innovation is the key driving force to achieve the development of low-carbon economic and enhance the efficiency of natural resources. With a panel data between 2001 and 2015, this paper applies the stochastic frontier analysis on the impact of green technological innovation on natural resources utilization efficiency taking high-tech industries as the research object, and analyzes the influence factors of natural resources utilization efficiency. The empirical result shows that under green technological innovation, the level of natural resources utilization efficiency is relatively higher and the change trend is increasing. Besides, green technology introduction funds and green new product development funds play a significant positive role on natural resources utilization efficiency, while green technology transformation funds and technological staff have the negative effect. Finally, policy suggestions about improving natural resources utilization efficiency are put forward. This paper makes an empirical study on the theoretical relationship between green technology innovation and natural resource utilization efficiency, clarifies the mechanism of green technological innovation on the efficiency of natural resource utilization based on the stochastic frontier analysis method, and analyzes the positive and negative factors of green technological innovation. The results can help to select the optimal innovation behavior to create the conditions of rational use of natural resources and realize economic development and environmental protection.

Suggested Citation

  • Miao, Chenglin & Fang, Debin & Sun, Liyan & Luo, Qiaoling, 2017. "Natural resources utilization efficiency under the influence of green technological innovation," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 153-161.
  • Handle: RePEc:eee:recore:v:126:y:2017:i:c:p:153-161
    DOI: 10.1016/j.resconrec.2017.07.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344917301982
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2017.07.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Mehdi, Rachida & Hafner, Christian M., 2014. "Inference in stochastic frontier analysis with dependent error terms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 102(C), pages 104-116.
    2. Ortega, Francisco J. & Gavilan, Jose M., 2013. "The measurement of production efficiency in scientific journals through stochastic frontier analysis models: Application to quantitative economics journals," Journal of Informetrics, Elsevier, vol. 7(4), pages 959-965.
    3. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    4. Yabar, Helmut & Hara, Keishiro & Uwasu, Michinori, 2012. "Comparative assessment of the co-evolution of environmental indicator systems in Japan and China," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 43-51.
    5. Lee, Sang-Ho & Park, Sanghoon & Kim, Taehyoung, 2015. "Review on investment direction of green technology R&D in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 186-193.
    6. Huang, Beijia & Jiang, Ping & Wang, Shaoping & Zhao, Juan & Wu, Luchao, 2016. "Low carbon innovation and practice in Caohejing High-Tech Industrial Park of Shanghai," International Journal of Production Economics, Elsevier, vol. 181(PB), pages 367-373.
    7. Liu, Peng & Zhou, Yuan & Zhou, Dillon K. & Xue, Lan, 2017. "Energy Performance Contract models for the diffusion of green-manufacturing technologies in China: A stakeholder analysis from SMEs’ perspective," Energy Policy, Elsevier, vol. 106(C), pages 59-67.
    8. Li, Xiaoying & Wang, Jue & Liu, Xiaming, 2013. "Can locally-recruited R&D personnel significantly contribute to multinational subsidiary innovation in an emerging economy?," International Business Review, Elsevier, vol. 22(4), pages 639-651.
    9. Hu, Zheng & Hu, Zhaoguang, 2013. "Production function with electricity consumption and its applications," Energy Economics, Elsevier, vol. 39(C), pages 313-321.
    10. Oikawa, Koki, 2016. "A microfoundation for stochastic frontier analysis," Economics Letters, Elsevier, vol. 139(C), pages 15-17.
    11. Gosens, Jorrit & Lu, Yonglong, 2013. "From lagging to leading? Technological innovation systems in emerging economies and the case of Chinese wind power," Energy Policy, Elsevier, vol. 60(C), pages 234-250.
    12. Albort-Morant, Gema & Leal-Millán, Antonio & Cepeda-Carrión, Gabriel, 2016. "The antecedents of green innovation performance: A model of learning and capabilities," Journal of Business Research, Elsevier, vol. 69(11), pages 4912-4917.
    13. Hailu, Kidanemariam Berhe & Tanaka, Makoto, 2015. "A “true” random effects stochastic frontier analysis for technical efficiency and heterogeneity: Evidence from manufacturing firms in Ethiopia," Economic Modelling, Elsevier, vol. 50(C), pages 179-192.
    14. Amore, Mario Daniele & Bennedsen, Morten, 2016. "Corporate governance and green innovation," Journal of Environmental Economics and Management, Elsevier, vol. 75(C), pages 54-72.
    15. Liu, Xiaohui & Hodgkinson, Ian R. & Chuang, Fu-Mei, 2014. "Foreign competition, domestic knowledge base and innovation activities: Evidence from Chinese high-tech industries," Research Policy, Elsevier, vol. 43(2), pages 414-422.
    16. Barros, Carlos Pestana & Williams, Jonathan, 2013. "The random parameters stochastic frontier cost function and the effectiveness of public policy: Evidence from bank restructuring in Mexico," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 98-108.
    17. Reichardt, Kristin & Negro, Simona O. & Rogge, Karoline S. & Hekkert, Marko P., 2016. "Analyzing interdependencies between policy mixes and technological innovation systems: The case of offshore wind in Germany," Technological Forecasting and Social Change, Elsevier, vol. 106(C), pages 11-21.
    18. Nguyen, Bang & Yu, Xiaoyu & Melewar, T.C. & Gupta, Suraksha, 2016. "Critical brand innovation factors (CBIF): Understanding innovation and market performance in the Chinese high-tech service industry," Journal of Business Research, Elsevier, vol. 69(7), pages 2471-2479.
    19. Ghosh, Ranjan & Kathuria, Vinish, 2016. "The effect of regulatory governance on efficiency of thermal power generation in India: A stochastic frontier analysis," Energy Policy, Elsevier, vol. 89(C), pages 11-24.
    20. Bi, Kexin & Huang, Ping & Wang, Xiangxiang, 2016. "Innovation performance and influencing factors of low-carbon technological innovation under the global value chain: A case of Chinese manufacturing industry," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 275-284.
    21. Yang, Zhenbing & Shao, Shuai & Yang, Lili & Liu, Jianghua, 2017. "Differentiated effects of diversified technological sources on energy-saving technological progress: Empirical evidence from China's industrial sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1379-1388.
    22. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2015. "Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 252-260.
    23. Emrouznejad, Ali & Yang, Guo-liang, 2016. "A framework for measuring global Malmquist–Luenberger productivity index with CO2 emissions on Chinese manufacturing industries," Energy, Elsevier, vol. 115(P1), pages 840-856.
    24. Kim, Kyoo il & Petrin, Amil & Song, Suyong, 2016. "Estimating production functions with control functions when capital is measured with error," Journal of Econometrics, Elsevier, vol. 190(2), pages 267-279.
    25. Hong, Jin & Feng, Bing & Wu, Yanrui & Wang, Liangbing, 2016. "Do government grants promote innovation efficiency in China's high-tech industries?," Technovation, Elsevier, vol. 57, pages 4-13.
    26. Marra, Alessandro & Antonelli, Paola & Pozzi, Cesare, 2017. "Emerging green-tech specializations and clusters – A network analysis on technological innovation at the metropolitan level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1037-1046.
    27. Sen, Suphi, 2015. "Corporate governance, environmental regulations, and technological change," European Economic Review, Elsevier, vol. 80(C), pages 36-61.
    28. Palmer, Mark & Truong, Yann, 2017. "The Impact of Technological Green New Product Introductions on Firm Profitability," Ecological Economics, Elsevier, vol. 136(C), pages 86-93.
    29. Emodi, Nnaemeka Vincent & Emodi, Chinenye Comfort & Murthy, Girish Panchakshara & Emodi, Adaeze Saratu Augusta, 2017. "Energy policy for low carbon development in Nigeria: A LEAP model application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 247-261.
    30. Ghisetti, Claudia & Quatraro, Francesco, 2017. "Green Technologies and Environmental Productivity: A Cross-sectoral Analysis of Direct and Indirect Effects in Italian Regions," Ecological Economics, Elsevier, vol. 132(C), pages 1-13.
    31. Zhang, Ning & Wang, Bing & Liu, Zhu, 2016. "Carbon emissions dynamics, efficiency gains, and technological innovation in China's industrial sectors," Energy, Elsevier, vol. 99(C), pages 10-19.
    32. Yue, Qiang & Wang, Heming & Gao, Chengkang & Du, Tao & Liu, Liying & Lu, Zhongwu, 2015. "Resources saving and emissions reduction of the aluminum industry in China," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 68-75.
    33. Hyard, Alexandra, 2013. "Non-technological innovations for sustainable transport," Technological Forecasting and Social Change, Elsevier, vol. 80(7), pages 1375-1386.
    34. Oh, Seog-Chan & Shin, Jaemin, 2015. "The impact of mismeasurement in performance benchmarking: A Monte Carlo comparison of SFA and DEA with different multi-period budgeting strategies," European Journal of Operational Research, Elsevier, vol. 240(2), pages 518-527.
    35. Reinhard, Stijn & Knox Lovell, C. A. & Thijssen, Geert J., 2000. "Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA," European Journal of Operational Research, Elsevier, vol. 121(2), pages 287-303, March.
    36. Hall, Bronwyn H. & Helmers, Christian, 2013. "Innovation and diffusion of clean/green technology: Can patent commons help?," Journal of Environmental Economics and Management, Elsevier, vol. 66(1), pages 33-51.
    37. Xu, Bin & Lin, Boqiang, 2017. "Assessing CO2 emissions in China's iron and steel industry: A nonparametric additive regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 325-337.
    38. Wang, David Han-Min & Yu, Tiffany Hui-Kuang & Liu, Hong-Quan, 2013. "Heterogeneous effect of high-tech industrial R&D spending on economic growth," Journal of Business Research, Elsevier, vol. 66(10), pages 1990-1993.
    39. Sueyoshi, Toshiyuki & Goto, Mika, 2014. "Environmental assessment for corporate sustainability by resource utilization and technology innovation: DEA radial measurement on Japanese industrial sectors," Energy Economics, Elsevier, vol. 46(C), pages 295-307.
    40. Diaz-Rainey, Ivan & Ashton, John K., 2015. "Investment inefficiency and the adoption of eco-innovations: The case of household energy efficiency technologies," Energy Policy, Elsevier, vol. 82(C), pages 105-117.
    41. Yuan, Chaoqing & Liu, Sifeng & Wu, Junlong, 2009. "Research on energy-saving effect of technological progress based on Cobb-Douglas production function," Energy Policy, Elsevier, vol. 37(8), pages 2842-2846, August.
    42. Yu, Chenjian & Li, Huiquan & Jia, Xiaoping & Li, Qiang, 2015. "Improving resource utilization efficiency in China's mineral resource-based cities: A case study of Chengde, Hebei province," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 1-10.
    43. Kumbhakar, Subal C. & Park, Byeong U. & Simar, Leopold & Tsionas, Efthymios G., 2007. "Nonparametric stochastic frontiers: A local maximum likelihood approach," Journal of Econometrics, Elsevier, vol. 137(1), pages 1-27, March.
    44. Roper, Stephen & Tapinos, Efstathios, 2016. "Taking risks in the face of uncertainty: An exploratory analysis of green innovation," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 357-363.
    45. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    46. Charoenrat, Teerawat & Harvie, Charles, 2014. "The efficiency of SMEs in Thai manufacturing: A stochastic frontier analysis," Economic Modelling, Elsevier, vol. 43(C), pages 372-393.
    47. Huysveld, Sophie & De Meester, Steven & Van linden, Veerle & Muylle, Hilde & Peiren, Nico & Lauwers, Ludwig & Dewulf, Jo, 2015. "Cumulative Overall Resource Efficiency Assessment (COREA) for comparing bio-based products with their fossil-derived counterparts," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 113-127.
    48. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    49. Balta-Ozkan, Nazmiye & Watson, Tom & Mocca, Elisabetta, 2015. "Spatially uneven development and low carbon transitions: Insights from urban and regional planning," Energy Policy, Elsevier, vol. 85(C), pages 500-510.
    50. Collier, Trevor & Johnson, Andrew L. & Ruggiero, John, 2011. "Technical efficiency estimation with multiple inputs and multiple outputs using regression analysis," European Journal of Operational Research, Elsevier, vol. 208(2), pages 153-160, January.
    51. Tsionas, Efthymios G., 2012. "Maximum likelihood estimation of stochastic frontier models by the Fourier transform," Journal of Econometrics, Elsevier, vol. 170(1), pages 234-248.
    52. Odeck, James & Bråthen, Svein, 2012. "A meta-analysis of DEA and SFA studies of the technical efficiency of seaports: A comparison of fixed and random-effects regression models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1574-1585.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xing & Guo, Yifan & Feng, Tianchu, 2023. "Towards green recovery: Natural resources utilization efficiency under the impact of environmental information disclosure," Resources Policy, Elsevier, vol. 83(C).
    2. Wei, Zixiang & Han, Botang & Pan, Xiuzhen & Shahbaz, Muhammad & Zafar, Muhammad Wasif, 2020. "Effects of diversified openness channels on the total-factor energy efficiency in China's manufacturing sub-sectors: Evidence from trade and FDI spillovers," Energy Economics, Elsevier, vol. 90(C).
    3. Du, Kerui & Li, Jianglong, 2019. "Towards a green world: How do green technology innovations affect total-factor carbon productivity," Energy Policy, Elsevier, vol. 131(C), pages 240-250.
    4. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    5. Wan, Qunchao & Chen, Jin & Yao, Zhu & Yuan, Ling, 2022. "Preferential tax policy and R&D personnel flow for technological innovation efficiency of China's high-tech industry in an emerging economy," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    6. Yu, Dejian & He, Xiaorong, 2020. "A bibliometric study for DEA applied to energy efficiency: Trends and future challenges," Applied Energy, Elsevier, vol. 268(C).
    7. Shamsuzzoha & Makoto Tanaka, 2021. "The role of human capital on the performance of manufacturing firms in Bangladesh," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(1), pages 21-33, January.
    8. Quang Nguyen & Sean Pascoe & Louisa Coglan & Son Nghiem, 2021. "The sensitivity of efficiency scores to input and other choices in stochastic frontier analysis: an empirical investigation," Journal of Productivity Analysis, Springer, vol. 55(1), pages 31-40, February.
    9. Jia-Yin Yin & Yun-Fei Cao & Bao-Jun Tang, 2019. "Fairness of China’s provincial energy environment efficiency evaluation: empirical analysis using a three-stage data envelopment analysis model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 343-362, January.
    10. Bansal, Sanchita & Singh, Shifali & Nangia, Priya, 2022. "Assessing the role of natural resource utilization in attaining select sustainable development goals in the era of digitalization," Resources Policy, Elsevier, vol. 79(C).
    11. Claudio Quintano & Paolo Mazzocchi & Antonella Rocca, 2020. "A competitive analysis of EU ports by fixing spatial and economic dimensions," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-19, December.
    12. Jamasb, Tooraj & Llorca, Manuel & Khetrapal, Pavan & Thakur, Tripta, 2021. "Institutions and performance of regulated firms: Evidence from electricity distribution in India," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 68-82.
    13. Xingle Long & Chuanwang Sun & Chao Wu & Bin Chen & Kofi Agyenim Boateng, 2020. "Green innovation efficiency across China’s 30 provinces: estimate, comparison, and convergence," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1243-1260, October.
    14. Jinqiu He & Huiwen Su, 2022. "Digital Transformation and Green Innovation of Chinese Firms: The Moderating Role of Regulatory Pressure and International Opportunities," IJERPH, MDPI, vol. 19(20), pages 1-21, October.
    15. Christopher F. Parmeter & Hung-Jen Wang & Subal C. Kumbhakar, 2017. "Nonparametric estimation of the determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 47(3), pages 205-221, June.
    16. Worthington, Andrew C. & Zelenyuk, Valentin, 2018. "Data envelopment analysis, truncated regression and double-bootstrap for panel data with application to Chinese bankingAuthor-Name: Du, Kai," European Journal of Operational Research, Elsevier, vol. 265(2), pages 748-764.
    17. Farnaz Pourzand & Mohammad Bakhshoodeh, 2014. "Technical effici ency and agricultural sustainability–technology gap of maize producers in Fars province of Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(3), pages 671-688, June.
    18. Yujian Jin & Lihong Yu & Yan Wang, 2022. "Green Total Factor Productivity and Its Saving Effect on the Green Factor in China’s Strategic Minerals Industry from 1998–2017," IJERPH, MDPI, vol. 19(22), pages 1-20, November.
    19. Jakub Sawulski & Marcin Galczynski & Robert Zajdler, 2018. "A review of the offshore wind innovation system in Poland," IBS Working Papers 06/2018, Instytut Badan Strukturalnych.
    20. Yushchenko, Alisa & Patel, Martin Kumar, 2017. "Cost-effectiveness of energy efficiency programs: How to better understand and improve from multiple stakeholder perspectives?," Energy Policy, Elsevier, vol. 108(C), pages 538-550.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:126:y:2017:i:c:p:153-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.