IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v25y2020i7d10.1007_s11027-019-09903-3.html
   My bibliography  Save this article

Green innovation efficiency across China’s 30 provinces: estimate, comparison, and convergence

Author

Listed:
  • Xingle Long

    (Beijing Institute of Technology
    Jiangsu University)

  • Chuanwang Sun

    (Xiamen University)

  • Chao Wu

    (Jiangsu University)

  • Bin Chen

    (Jiangsu University)

  • Kofi Agyenim Boateng

    (Jiangsu University)

Abstract

Considering government and market failure of environmental regulation to combat increasing GHG (greenhouse gas) emissions, green innovation can mitigate pollution through production processes and clean production. This paper aims to investigate endogenous green innovation efficiency and its convergence across China’s 30 provinces from 2004 to 2014. Due to factor endowment heterogeneity, it is important to explore the convergence of green innovation efficiency among China’s different regions, which can compare green innovation efficiency spatially and propose scientific policy implications for regions with relatively weaker green innovation efficiency. Green innovation efficiency is evaluated through epsilon-based measure (EBM) global Malmquist-Luenberger (ML) in order to overcome the demerits of radial model and slacks-based measure (SBM). Panel unit root test is implemented to explore the convergence of green innovation efficiency across different provinces of China, which addresses the invalid inference of conventional β convergence. The empirical analysis revealed that green innovation efficiency in the east is the highest among four regions of China. Unit root test of panel data revealed that the northeast had the highest convergence among China’s four regions. It is important to enhance green innovation capacity, and expand knowledge spillover of green innovation technology in order to mitigate GHG emissions.

Suggested Citation

  • Xingle Long & Chuanwang Sun & Chao Wu & Bin Chen & Kofi Agyenim Boateng, 2020. "Green innovation efficiency across China’s 30 provinces: estimate, comparison, and convergence," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1243-1260, October.
  • Handle: RePEc:spr:masfgc:v:25:y:2020:i:7:d:10.1007_s11027-019-09903-3
    DOI: 10.1007/s11027-019-09903-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-019-09903-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-019-09903-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Romer, Paul M, 1986. "Increasing Returns and Long-run Growth," Journal of Political Economy, University of Chicago Press, vol. 94(5), pages 1002-1037, October.
    2. Arielle Beyaert & Maximo Camacho, 2008. "TAR Panel Unit Root Tests and Real Convergence," Review of Development Economics, Wiley Blackwell, vol. 12(3), pages 668-681, August.
    3. Han, Lei & Han, Botang & Shi, Xunpeng & Su, Bin & Lv, Xin & Lei, Xiao, 2018. "Energy efficiency convergence across countries in the context of China’s Belt and Road initiative," Applied Energy, Elsevier, vol. 213(C), pages 112-122.
    4. Tone, Kaoru & Tsutsui, Miki, 2010. "An epsilon-based measure of efficiency in DEA - A third pole of technical efficiency," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1554-1563, December.
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. Evans, Paul, 1998. "Using Panel Data to Evaluate Growth Theories," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(2), pages 295-306, May.
    7. Qunwei Wang & Ye Hang & Jin‐Li Hu & Ching‐Ren Chiu, 2018. "An alternative metafrontier framework for measuring the heterogeneity of technology," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(5), pages 427-445, August.
    8. Cai, Yifei & Chang, Tsangyao & Inglesi-Lotz, Roula, 2018. "Asymmetric persistence in convergence for carbon dioxide emissions based on quantile unit root test with Fourier function," Energy, Elsevier, vol. 161(C), pages 470-481.
    9. Joakim Westerlund & Syed Basher, 2008. "Testing for Convergence in Carbon Dioxide Emissions Using a Century of Panel Data," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 40(1), pages 109-120, May.
    10. Ghisetti, Claudia & Quatraro, Francesco, 2017. "Green Technologies and Environmental Productivity: A Cross-sectoral Analysis of Direct and Indirect Effects in Italian Regions," Ecological Economics, Elsevier, vol. 132(C), pages 1-13.
    11. Zhang, Ning & Wang, Bing & Liu, Zhu, 2016. "Carbon emissions dynamics, efficiency gains, and technological innovation in China's industrial sectors," Energy, Elsevier, vol. 99(C), pages 10-19.
    12. Lin, Pei-Chien & Huang, Ho-Chuan (River), 2012. "Inequality convergence revisited: Evidence from stationarity panel tests with breaks and cross correlation," Economic Modelling, Elsevier, vol. 29(2), pages 316-325.
    13. Casu, Barbara & Ferrari, Alessandra & Girardone, Claudia & Wilson, John O.S., 2016. "Integration, productivity and technological spillovers: Evidence for eurozone banking industries," European Journal of Operational Research, Elsevier, vol. 255(3), pages 971-983.
    14. Gang Tian & Jian Shi & Licheng Sun & Xingle Long & Benhai Guo, 2017. "Dynamic changes in the energy–carbon performance of Chinese transportation sector: a meta-frontier non-radial directional distance function approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 585-607, November.
    15. Evans, Paul & Karras, Georgios, 1996. "Convergence revisited," Journal of Monetary Economics, Elsevier, vol. 37(2-3), pages 249-265, April.
    16. Malin Song & Jun Tao & Shuhong Wang, 2015. "FDI, technology spillovers and green innovation in China: analysis based on Data Envelopment Analysis," Annals of Operations Research, Springer, vol. 228(1), pages 47-64, May.
    17. Duan, Hongbo & Zhang, Gupeng & Wang, Shouyang & Fan, Ying, 2019. "Integrated benefit-cost analysis of China's optimal adaptation and targeted mitigation," Ecological Economics, Elsevier, vol. 160(C), pages 76-86.
    18. Taegi Kim & Keith E. Maskus & Keun-Yeob Oh, 2009. "Effects Of Patents On Productivity Growth In Korean Manufacturing: A Panel Data Analysis," Pacific Economic Review, Wiley Blackwell, vol. 14(2), pages 137-154, May.
    19. Pastor, Jesus T. & Lovell, C.A. Knox, 2005. "A global Malmquist productivity index," Economics Letters, Elsevier, vol. 88(2), pages 266-271, August.
    20. Yang, Fuxia & Yang, Mian, 2015. "Analysis on China's eco-innovations: Regulation context, intertemporal change and regional differences," European Journal of Operational Research, Elsevier, vol. 247(3), pages 1003-1012.
    21. Nilgun Yavuz & Veli Yilanci, 2013. "Convergence in Per Capita Carbon Dioxide Emissions Among G7 Countries: A TAR Panel Unit Root Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(2), pages 283-291, February.
    22. Bhattacharya, Mita & Inekwe, John Nkwoma & Sadorsky, Perry & Saha, Anjan, 2018. "Convergence of energy productivity across Indian states and territories," Energy Economics, Elsevier, vol. 74(C), pages 427-440.
    23. Marco Barassi & Matthew Cole & Robert Elliott, 2008. "Stochastic Divergence or Convergence of Per Capita Carbon Dioxide Emissions: Re-examining the Evidence," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 40(1), pages 121-137, May.
    24. Gene M. Grossman & Elhanan Helpman, 1993. "Innovation and Growth in the Global Economy," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262570971, December.
    25. Herrerias, M.J., 2013. "The environmental convergence hypothesis: Carbon dioxide emissions according to the source of energy," Energy Policy, Elsevier, vol. 61(C), pages 1140-1150.
    26. Pei-Chien Lin & Ho-Chuan Huang, 2012. "Convergence in income inequality? evidence from panel unit root tests with structural breaks," Empirical Economics, Springer, vol. 43(1), pages 153-174, August.
    27. Kaoru Tone & Miki Tsutsui, 2010. "An epsilon-based measure of efficiency in DEA revisited -A third pole of technical efficiency," GRIPS Discussion Papers 09-21, National Graduate Institute for Policy Studies.
    28. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2007. "Environmental production functions and environmental directional distance functions," Energy, Elsevier, vol. 32(7), pages 1055-1066.
    29. Awaworyi Churchill, Sefa & Inekwe, John & Ivanovski, Kris, 2018. "Conditional convergence in per capita carbon emissions since 1900," Applied Energy, Elsevier, vol. 228(C), pages 916-927.
    30. Hall, Bronwyn H. & Helmers, Christian, 2013. "Innovation and diffusion of clean/green technology: Can patent commons help?," Journal of Environmental Economics and Management, Elsevier, vol. 66(1), pages 33-51.
    31. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    32. Sun, Chuanwang & Ma, Tiemeng & Xu, Meilian, 2018. "Exploring the prospects of cooperation in the manufacturing industries between India and China: A perspective of embodied energy in India-China trade," Energy Policy, Elsevier, vol. 113(C), pages 643-650.
    33. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    34. Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
    35. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, December.
    36. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dezhong Duan & Qifan Xia, 2021. "Does Environmental Regulation Promote Environmental Innovation? An Empirical Study of Cities in China," IJERPH, MDPI, vol. 19(1), pages 1-18, December.
    2. Chuantang Ren & Tao Wang & Yue Wang & Yizhen Zhang & Luwei Wang, 2023. "The Heterogeneous Effects of Formal and Informal Environmental Regulation on Green Technology Innovation—An Empirical Study of 284 Cities in China," IJERPH, MDPI, vol. 20(2), pages 1-17, January.
    3. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    4. Lu Zhang & Renyan Mu & Shuhua Hu & Quan Zhang & Song Wang, 2021. "Impacts of Manufacturing Specialized and Diversified Agglomeration on the Eco-Innovation Efficiency—A Nonlinear Test from Dynamic Perspective," Sustainability, MDPI, vol. 13(7), pages 1-27, March.
    5. Jiao Feng & Nannan Wang & Guoshuai Sun, 2022. "Measurement of Innovation-Driven Development Performance of Large-Scale Environmental Protection Enterprises Investing in Public–Private Partnership Projects Based on the Hybrid Method," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    6. Liang Liu & Yuting Zhao & Xiujuan Gong & Shu Liu & Mengyue Li & Yirui Yang & Pan Jiang, 2023. "Threshold Effect of Environmental Regulation and Green Innovation Efficiency: From the Perspective of Chinese Fiscal Decentralization and Environmental Protection Inputs," IJERPH, MDPI, vol. 20(5), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xingle Long & Yusen Luo & Huaping Sun & Gang Tian, 2018. "Fertilizer using intensity and environmental efficiency for China’s agriculture sector from 1997 to 2014," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1573-1591, July.
    2. Long, Xingle & Sun, Mei & Cheng, Faxin & Zhang, Jijian, 2017. "Convergence analysis of eco-efficiency of China’s cement manufacturers through unit root test of panel data," Energy, Elsevier, vol. 134(C), pages 709-717.
    3. Ahmed, Mumtaz & Khan, Atif Maqbool & Bibi, Salma & Zakaria, Muhammad, 2017. "Convergence of per capita CO2 emissions across the globe: Insights via wavelet analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 86-97.
    4. Luo, Yusen & Lu, Zhengnan & Long, Xingle, 2020. "Heterogeneous effects of endogenous and foreign innovation on CO2 emissions stochastic convergence across China," Energy Economics, Elsevier, vol. 91(C).
    5. Song, Malin & Zhu, Shuai & Wang, Jianlin & Zhao, Jiajia, 2020. "Share green growth: Regional evaluation of green output performance in China," International Journal of Production Economics, Elsevier, vol. 219(C), pages 152-163.
    6. Ying Li & Yung-ho Chiu & Tai-Yu Lin, 2019. "Energy and Environmental Efficiency in Different Chinese Regions," Sustainability, MDPI, vol. 11(4), pages 1-26, February.
    7. Diego Romero-Ávila & Tolga Omay, 2023. "Convergence of GHGs emissions in the long-run: aerosol precursors, reactive gases and aerosols—a nonlinear panel approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12303-12337, November.
    8. Zhou, Anhua & Li, Jun, 2021. "Investigate the impact of market reforms on the improvement of manufacturing energy efficiency under China’s provincial-level data," Energy, Elsevier, vol. 228(C).
    9. Eftychia Tsanana & Constantinos Katrakilidis, 2014. "Do Balkan economies catch up with EU? New evidence from panel unit root analysis," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 41(4), pages 641-662, November.
    10. Nilgun Yavuz & Veli Yilanci, 2013. "Convergence in Per Capita Carbon Dioxide Emissions Among G7 Countries: A TAR Panel Unit Root Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(2), pages 283-291, February.
    11. Octavio Fernández-Amador & Doris A. Oberdabernig & Patrick Tomberger, 2019. "Testing for Convergence in Carbon Dioxide Emissions Using a Bayesian Robust Structural Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1265-1286, August.
    12. Matsuki, Takashi & Pan, Lei, 2021. "Per capita carbon emissions convergence in developing Asia: A century of evidence from covariate unit root test with endogenous structural breaks," Energy Economics, Elsevier, vol. 99(C).
    13. Wang, Zhaohua & Feng, Chao, 2015. "Sources of production inefficiency and productivity growth in China: A global data envelopment analysis," Energy Economics, Elsevier, vol. 49(C), pages 380-389.
    14. Wang, Juan & Zhang, Kezhong, 2014. "Convergence of carbon dioxide emissions in different sectors in China," Energy, Elsevier, vol. 65(C), pages 605-611.
    15. Jianhuan Huang & Yantuan Yu & Chunbo Ma, 2018. "Energy Efficiency Convergence in China: Catch-Up, Lock-In and Regulatory Uniformity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(1), pages 107-130, May.
    16. Ivanovski, Kris & Awaworyi Churchill, Sefa, 2020. "Convergence and determinants of greenhouse gas emissions in Australia: A regional analysis," Energy Economics, Elsevier, vol. 92(C).
    17. Qin, Quande & Li, Xin & Li, Li & Zhen, Wei & Wei, Yi-Ming, 2017. "Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas," Applied Energy, Elsevier, vol. 185(P1), pages 604-614.
    18. Zebin Zheng & Wenjun Xiao & Ziye Cheng, 2023. "China’s Green Total Factor Energy Efficiency Assessment Based on Coordinated Reduction in Pollution and Carbon Emission: From the 11th to the 13th Five-Year Plan," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    19. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    20. Mariam Camarero & Juana Castillo-Giménez & Andrés Picazo-Tadeo & Cecilio Tamarit, 2014. "Is eco-efficiency in greenhouse gas emissions converging among European Union countries?," Empirical Economics, Springer, vol. 47(1), pages 143-168, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:25:y:2020:i:7:d:10.1007_s11027-019-09903-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.