IDEAS home Printed from https://ideas.repec.org/p/ngi/dpaper/09-21.html
   My bibliography  Save this paper

An epsilon-based measure of efficiency in DEA revisited -A third pole of technical efficiency

Author

Listed:
  • Kaoru Tone

    (National Graduate Institute for Policy Studies)

  • Miki Tsutsui

    (Central Research Institute of Electric Power Industry)

Abstract

In DEA, we have two measures of technical efficiency with different characteristics: radial and non-radial. In this paper we compile them into a composite model called “epsilon-based measure (EBM).” For this purpose we introduce two parameters which connect radial and non-radial models. These two parameters are obtained from the newly defined affinity index between inputs or outputs along with principal component analysis on the affinity matrix. Thus, EBM takes into account diversity of input/output data and their relative importance for measuring technical efficiency.

Suggested Citation

  • Kaoru Tone & Miki Tsutsui, 2010. "An epsilon-based measure of efficiency in DEA revisited -A third pole of technical efficiency," GRIPS Discussion Papers 09-21, National Graduate Institute for Policy Studies.
  • Handle: RePEc:ngi:dpaper:09-21
    as

    Download full text from publisher

    File URL: https://grips.repo.nii.ac.jp/?action=repository_action_common_download&item_id=1021&item_no=1&attribute_id=20&file_no=1
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Peng & Wang, Yiqing & Chiu, Yung-ho & Li, Ying & Lin, Tai-Yu, 2019. "Production efficiency and geographical location of Chinese coal enterprises - undesirable EBM DEA," Resources Policy, Elsevier, vol. 64(C).
    2. A. M. Aldanondo & V. L. Casasnovas, 2015. "Input aggregation bias in technical efficiency with multiple criteria analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 22(6), pages 430-435, April.
    3. Liangen Zeng, 2021. "China’s Eco-Efficiency: Regional Differences and Influencing Factors Based on a Spatial Panel Data Approach," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    4. Ke-Liang Wang & Jianguo Wang & Jianming Wang & Lili Ding & Mingsong Zhao & Qunwei Wang, 2020. "Investigating the spatiotemporal differences and influencing factors of green water use efficiency of Yangtze River Economic Belt in China," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-24, April.
    5. Ren, Fang-rong & Tian, Ze & Liu, Jingjing & Shen, Yu-ting, 2020. "Analysis of CO2 emission reduction contribution and efficiency of China’s solar photovoltaic industry: Based on Input-output perspective," Energy, Elsevier, vol. 199(C).
    6. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    7. Jin, Peizhen & Peng, Chong & Song, Malin, 2019. "Macroeconomic uncertainty, high-level innovation, and urban green development performance in China," China Economic Review, Elsevier, vol. 55(C), pages 1-18.
    8. Xingle Long & Chuanwang Sun & Chao Wu & Bin Chen & Kofi Agyenim Boateng, 2020. "Green innovation efficiency across China’s 30 provinces: estimate, comparison, and convergence," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1243-1260, October.
    9. Cheng, Gang & Qian, Zhenhua, 2011. "An epsilon-based measure of efficiency in DEA - An alternative method for the affinity index," MPRA Paper 41680, University Library of Munich, Germany, revised 06 Nov 2011.
    10. Cui, Qiang & Li, Ye, 2020. "A cross efficiency distinguishing method to explore the cooperation degree in dynamic airline environmental efficiency," Transport Policy, Elsevier, vol. 99(C), pages 31-43.
    11. Cui, Qiang & Li, Ye, 2017. "Airline efficiency measures using a Dynamic Epsilon-Based Measure model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 121-134.
    12. Xu, Zhongwen & Yao, Liming & Liu, Qiaoling & Long, Yin, 2019. "Policy implications for achieving the carbon emission reduction target by 2030 in Japan-Analysis based on a bilevel equilibrium model," Energy Policy, Elsevier, vol. 134(C).
    13. Zhou, Anhua & Li, Jun, 2021. "Investigate the impact of market reforms on the improvement of manufacturing energy efficiency under China’s provincial-level data," Energy, Elsevier, vol. 228(C).
    14. Yu, Yantuan & Huang, Jianhuan & Zhang, Ning, 2019. "Modeling the eco-efficiency of Chinese prefecture-level cities with regional heterogeneities: A comparative perspective," Ecological Modelling, Elsevier, vol. 402(C), pages 1-17.

    More about this item

    Keywords

    Data envelopment analysis; Radial; Non-radial; CCR; SBM; EBM; Principal component analysis;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ngi:dpaper:09-21. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/gripsjp.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/gripsjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.