IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i22p14717-d967519.html
   My bibliography  Save this article

Green Total Factor Productivity and Its Saving Effect on the Green Factor in China’s Strategic Minerals Industry from 1998–2017

Author

Listed:
  • Yujian Jin

    (School of Business, East China University of Science and Technology, Shanghai 200237, China)

  • Lihong Yu

    (School of Business, East China University of Science and Technology, Shanghai 200237, China)

  • Yan Wang

    (School of Business, Linyi University, Linyi 276000, China)

Abstract

Improving green total factor productivity (GTFP) is a fundamental solution to help the strategic mineral industry to achieve green and sustainable development. This study incorporates the dual negative externalities of resource depletion and environmental pollution into the GTFP measurement to capture the ‘green’ elements. By employing a truncated third-order (TTO) translog cost function and the feasible generalized least squares (FGLS) approach, we evaluate the GTFP growth performance and its components in China’s strategic minerals industry from 1998 to 2017. Moreover, we explore the bias of technological progress toward the resource and environmental factors to grasp the green factor saving effects. The results show that: (1) during the sample period, the average GTFP growth rate of China’s strategic minerals industry was 0.46%, but there were variances between mineral sectors. Nevertheless, after 2012, the GTFP of all mineral sectors experienced different degrees of decrease. (2) The main driver of adjustments in GTFP growth shifted from technological progress to changes in scale efficiency, with technological progress contributing less to GTFP growth. This is particularly evident in the metal and energy minerals sectors. (3) Green technological progress is biased toward saving environmental factor input but enhancing resource extraction. Therefore, the current development of China’s strategic minerals industry falls into a non-sustainable mode of being environmentally friendly but not resource-saving.

Suggested Citation

  • Yujian Jin & Lihong Yu & Yan Wang, 2022. "Green Total Factor Productivity and Its Saving Effect on the Green Factor in China’s Strategic Minerals Industry from 1998–2017," IJERPH, MDPI, vol. 19(22), pages 1-20, November.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:22:p:14717-:d:967519
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/22/14717/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/22/14717/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Xuehong & Zeng, Anqi & Zhong, Meirui & Huang, Jianbai, 2021. "Elasticity of substitution and biased technical change in the CES production function for China's metal-intensive industries," Resources Policy, Elsevier, vol. 73(C).
    2. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    3. Zha, Donglan & Kavuri, Anil Savio & Si, Songjian, 2017. "Energy biased technology change: Focused on Chinese energy-intensive industries," Applied Energy, Elsevier, vol. 190(C), pages 1081-1089.
    4. Lin, Boqiang & Chen, Xing, 2020. "How technological progress affects input substitution and energy efficiency in China: A case of the non-ferrous metals industry," Energy, Elsevier, vol. 206(C).
    5. Goh, Mark & Yong, Jongsay, 2006. "Impacts of code-share alliances on airline cost structure: A truncated third-order translog estimation," International Journal of Industrial Organization, Elsevier, vol. 24(4), pages 835-866, July.
    6. Wang, Wei Siang & Schmidt, Peter, 2009. "On the distribution of estimated technical efficiency in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 148(1), pages 36-45, January.
    7. Dariush Khezrimotlagh & Yao Chen, 2018. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 217-234, Springer.
    8. Fabian Frick & Johannes Sauer, 2021. "Technological Change in Dairy Farming with Increased Price Volatility," Journal of Agricultural Economics, Wiley Blackwell, vol. 72(2), pages 564-588, June.
    9. Shao, Liuguo & He, Yingying & Feng, Chao & Zhang, Shijing, 2016. "An empirical analysis of total-factor productivity in 30 sub-sub-sectors of China's nonferrous metal industry," Resources Policy, Elsevier, vol. 50(C), pages 264-269.
    10. Fang, Chuandi & Cheng, Jinhua & Zhu, Yongguang & Chen, Jiahao & Peng, Xinjie, 2021. "Green total factor productivity of extractive industries in China: An explanation from technology heterogeneity," Resources Policy, Elsevier, vol. 70(C).
    11. Chong Huang & Kedong Yin & Hongbo Guo & Benshuo Yang, 2022. "Regional Differences and Convergence of Inter-Provincial Green Total Factor Productivity in China under Technological Heterogeneity," IJERPH, MDPI, vol. 19(9), pages 1-20, May.
    12. Lee, Chi-Chuan & Lee, Chien-Chiang, 2022. "How does green finance affect green total factor productivity? Evidence from China," Energy Economics, Elsevier, vol. 107(C).
    13. Jaffe, Adam B, 1988. "Demand and Supply Influences in R&D Intensity and Productivity Growth," The Review of Economics and Statistics, MIT Press, vol. 70(3), pages 431-437, August.
    14. Wu, Haitao & Hao, Yu & Ren, Siyu, 2020. "How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China," Energy Economics, Elsevier, vol. 91(C).
    15. Shuxing Xiao & Zuxin He & Weikun Zhang & Xiaoming Qin, 2022. "The Agricultural Green Production following the Technological Progress: Evidence from China," IJERPH, MDPI, vol. 19(16), pages 1-16, August.
    16. Zhang, Lina & Gao, Wanting & Chiu, Yung-ho & Pang, Qinghua & Shi, Zhen & Guo, Zhiqin, 2021. "Environmental performance indicators of China's coal mining industry: A bootstrapping Malmquist index analysis," Resources Policy, Elsevier, vol. 71(C).
    17. Timothy J. Coelli & D.S. Prasada Rao & Christopher J. O’Donnell & George E. Battese, 2005. "An Introduction to Efficiency and Productivity Analysis," Springer Books, Springer, edition 0, number 978-0-387-25895-9, July.
    18. Reinhard, Stijn & Knox Lovell, C. A. & Thijssen, Geert J., 2000. "Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA," European Journal of Operational Research, Elsevier, vol. 121(2), pages 287-303, March.
    19. Zhong, Mei-Rui & Xiao, Shun-Li & Zou, Han & Zhang, Yi-Jun & Song, Yi, 2021. "The effects of technical change on carbon intensity in China’s non-ferrous metal industry," Resources Policy, Elsevier, vol. 73(C).
    20. Yaya Su & Zhenghui Li & Cunyi Yang, 2021. "Spatial Interaction Spillover Effects between Digital Financial Technology and Urban Ecological Efficiency in China: An Empirical Study Based on Spatial Simultaneous Equations," IJERPH, MDPI, vol. 18(16), pages 1-27, August.
    21. Filippini, Massimo & Geissmann, Thomas & Karplus, Valerie J. & Zhang, Da, 2020. "The productivity impacts of energy efficiency programs in developing countries: Evidence from iron and steel firms in China," China Economic Review, Elsevier, vol. 59(C).
    22. Zhu, Xuehong & Chen, Ying & Feng, Chao, 2018. "Green total factor productivity of China's mining and quarrying industry: A global data envelopment analysis," Resources Policy, Elsevier, vol. 57(C), pages 1-9.
    23. Sun, Xiaohua & Ren, Junlin & Wang, Yun, 2022. "The impact of resource taxation on resource curse: Evidence from Chinese resource tax policy," Resources Policy, Elsevier, vol. 78(C).
    24. Li, Hai-ling & Zhu, Xue-hong & Chen, Jin-yu & Jiang, Fei-tao, 2019. "Environmental regulations, environmental governance efficiency and the green transformation of China's iron and steel enterprises," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    25. Wu, Haitao & Hao, Yu & Ren, Siyu & Yang, Xiaodong & Xie, Guo, 2021. "Does internet development improve green total factor energy efficiency? Evidence from China," Energy Policy, Elsevier, vol. 153(C).
    26. Stevenson, Rodney, 1980. "Measuring Technological Bias," American Economic Review, American Economic Association, vol. 70(1), pages 162-173, March.
    27. Kumbhakar, Subal C., 2002. "Decomposition of technical change into input-specific components: a factor augmenting approach," Japan and the World Economy, Elsevier, vol. 14(3), pages 243-264, August.
    28. Xu Dong & Yang Chen & Qinqin Zhuang & Yali Yang & Xiaomeng Zhao, 2022. "Agglomeration of Productive Services, Industrial Structure Upgrading and Green Total Factor Productivity: An Empirical Analysis Based on 68 Prefectural-Level-and-Above Cities in the Yellow River Basin," IJERPH, MDPI, vol. 19(18), pages 1-19, September.
    29. Oh, Dong-hyun, 2015. "Productivity growth, technical change and economies of scale of Korean fossil-fuel generation companies, 2001–2012: A dual approach," Energy Economics, Elsevier, vol. 49(C), pages 113-121.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Honma, Satoshi & Ushifusa, Yoshiaki & Okamura, Soyoka & Vandercamme, Lilu, 2023. "Measuring carbon emissions performance of Japan's metal industry: Energy inputs, agglomeration, and the potential for green recovery reduction," Resources Policy, Elsevier, vol. 82(C).
    2. Li, Ying & Cen, Hongyi & Lin, Tai-Yu & Lin, Yi-Nuo & Chiu, Yung-Ho, 2022. "Sustainable coal mine and coal land development in China," Resources Policy, Elsevier, vol. 79(C).
    3. Hanhua Shao & Jixin Cheng & Yuansheng Wang & Xiaoming Li, 2022. "Can Digital Finance Promote Comprehensive Carbon Emission Performance? Evidence from Chinese Cities," IJERPH, MDPI, vol. 19(16), pages 1-18, August.
    4. Zhang, Yijun & Li, Xiaoping & Song, Yi & Jiang, Feitao, 2021. "Can green industrial policy improve total factor productivity? Firm-level evidence from China," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 51-62.
    5. Shuying Wang & Yifei Gao & Hongchang Zhou, 2022. "Research on Green Total Factor Productivity Enhancement Path from the Configurational Perspective—Based on the TOE Theoretical Framework," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    6. Zhang, Rui & Qie, Xiaotong & Hu, Yanyong & Chen, Xue, 2022. "Does de-capacity policy promote the efficient and green development of the coal industry? –Based on the evidence of China," Resources Policy, Elsevier, vol. 77(C).
    7. Zhou, Anhua & Li, Jun, 2021. "Investigate the impact of market reforms on the improvement of manufacturing energy efficiency under China’s provincial-level data," Energy, Elsevier, vol. 228(C).
    8. Cenjie Liu & Zhongbao Zhou & Qing Liu & Rui Xie & Ximei Zeng, 2020. "Can a low-carbon development path achieve win-win development: evidence from China’s low-carbon pilot policy," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1199-1219, October.
    9. Fang, Zhen & Razzaq, Asif & Mohsin, Muhammad & Irfan, Muhammad, 2022. "Spatial spillovers and threshold effects of internet development and entrepreneurship on green innovation efficiency in China," Technology in Society, Elsevier, vol. 68(C).
    10. Tao Ma & Xiaoxi Cao, 2022. "FDI, technological progress, and green total factor energy productivity: evidence from 281 prefecture cities in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 11058-11088, September.
    11. Hao, Xiaoli & Wen, Shufang & Xue, Yan & Wu, Haitao & Hao, Yu, 2023. "How to improve environment, resources and economic efficiency in the digital era?," Resources Policy, Elsevier, vol. 80(C).
    12. Yi Liang & Xiaoli Hao, 2022. "Can the Agglomeration of New Energy Industries Improve Environmental Efficiency?—Evidence from China," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    13. Yusen Luo & Zhengnan Lu & Chao Wu & Claudia Nyarko Mensah, 2023. "Environmental Regulation Effect on Green Total Factor Productivity: Mediating Role of Foreign Direct Investment Quantity and Quality," IJERPH, MDPI, vol. 20(4), pages 1-18, February.
    14. Xiaoli Hao & Xinhui Wang & Haitao Wu & Yu Hao, 2023. "Path to sustainable development: Does digital economy matter in manufacturing green total factor productivity?," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 360-378, February.
    15. Gao, Yuning & Zhang, Meichen & Zheng, Jinghai, 2021. "Accounting and determinants analysis of China's provincial total factor productivity considering carbon emissions," China Economic Review, Elsevier, vol. 65(C).
    16. Talat S. Genc & Stephen Kosempel, 2023. "Energy Transition and the Economy: A Review Article," Energies, MDPI, vol. 16(7), pages 1-26, March.
    17. Fang, Chuandi & Cheng, Jinhua & Zhu, Yongguang & Chen, Jiahao & Peng, Xinjie, 2021. "Green total factor productivity of extractive industries in China: An explanation from technology heterogeneity," Resources Policy, Elsevier, vol. 70(C).
    18. Shen, Zhiyang & Wu, Haitao & Bai, Kaixuan & Hao, Yu, 2022. "Integrating economic, environmental and societal performance within the productivity measurement," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    19. Shuai Wang & Cunyi Yang & Zhenghui Li, 2022. "Green Total Factor Productivity Growth: Policy-Guided or Market-Driven?," IJERPH, MDPI, vol. 19(17), pages 1-19, August.
    20. Zhu, Minglei & Huang, Haiyan & Ma, Weiwen, 2023. "Transformation of natural resource use: Moving towards sustainability through ICT-based improvements in green total factor energy efficiency," Resources Policy, Elsevier, vol. 80(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:22:p:14717-:d:967519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.