IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v102y2014icp104-116.html
   My bibliography  Save this article

Inference in stochastic frontier analysis with dependent error terms

Author

Listed:
  • El Mehdi, Rachida
  • Hafner, Christian M.

Abstract

Stochastic frontier analysis (SFA) is often used to estimate technical efficiency of entities such as firms, countries or municipalities. A potential dependence between the two components of the error term can be taken into account by a copula function. While estimation of the model is straightforward using the Corrected Ordinary Least Squares (COLS) and Maximum Likelihood (ML) methods, an open issue concerns the inference of the technical efficiencies. We propose a parametric bootstrap algorithm which is suitable for the dependence case. This allows us to estimate the efficiency percentile confidence intervals. We apply the model to the estimation of technical efficiencies of moroccan municipalities.

Suggested Citation

  • El Mehdi, Rachida & Hafner, Christian M., 2014. "Inference in stochastic frontier analysis with dependent error terms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 102(C), pages 104-116.
  • Handle: RePEc:eee:matcom:v:102:y:2014:i:c:p:104-116
    DOI: 10.1016/j.matcom.2013.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475413002310
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. William Greene, 2010. "A stochastic frontier model with correction for sample selection," Journal of Productivity Analysis, Springer, vol. 34(1), pages 15-24, August.
    2. Christian Ritter & Léopold Simar, 1997. "Pitfalls of Normal-Gamma Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 8(2), pages 167-182, May.
    3. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    4. Greene, William H., 1980. "Maximum likelihood estimation of econometric frontier functions," Journal of Econometrics, Elsevier, vol. 13(1), pages 27-56, May.
    5. Murray D. Smith, 2008. "Stochastic frontier models with dependent error components," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 172-192, March.
    6. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    7. Greene, William H., 1980. "On the estimation of a flexible frontier production model," Journal of Econometrics, Elsevier, vol. 13(1), pages 101-115, May.
    8. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    9. Leopold Simar & Paul Wilson, 2010. "Inferences from Cross-Sectional, Stochastic Frontier Models," Econometric Reviews, Taylor & Francis Journals, vol. 29(1), pages 62-98.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:102:y:2014:i:c:p:104-116. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.