IDEAS home Printed from https://ideas.repec.org/p/ste/nystbu/08-9.html
   My bibliography  Save this paper

A Stochastic Frontier Model with Correction for Sample Selection

Author

Listed:
  • William Greene

Abstract

No abstract is available for this item.

Suggested Citation

  • William Greene, 2008. "A Stochastic Frontier Model with Correction for Sample Selection," Working Papers 08-9, New York University, Leonard N. Stern School of Business, Department of Economics.
  • Handle: RePEc:ste:nystbu:08-9
    as

    Download full text from publisher

    File URL: http://w4.stern.nyu.edu/economics/docs/workingpapers/2008/StochasticFrontier_Selection.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Terza, Joseph V., 1998. "Estimating count data models with endogenous switching: Sample selection and endogenous treatment effects," Journal of Econometrics, Elsevier, vol. 84(1), pages 129-154, May.
    2. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    3. Subal Kumbhakar & Efthymios Tsionas & Timo Sipiläinen, 2009. "Joint estimation of technology choice and technical efficiency: an application to organic and conventional dairy farming," Journal of Productivity Analysis, Springer, vol. 31(3), pages 151-161, June.
    4. Alan Collins & Richard I. D. Harris, 2005. "The Impact Of Foreign Ownership And Efficiency On Pollution Abatement Expenditure By Chemical Plants: Some Uk Evidence," Scottish Journal of Political Economy, Scottish Economic Society, vol. 52(5), pages 747-768, November.
    5. Terza, J.V., 1995. "An Estimator for Nonlinear Regression Models with Endogenous Switching and Sample Selection," Papers 04-95-04, Pennsylvania State - Department of Economics.
    6. Gary Koop & Mark F J Steel, 1999. "Bayesian Analysis of Stochastic Frontier Models," Edinburgh School of Economics Discussion Paper Series 19, Edinburgh School of Economics, University of Edinburgh.
    7. M. Weeks, 2003. "Discrete choice methods with simulation, Kenneth E. Train, Cambridge University Press, 2003, ISBN: 0-521-81696-3, pp. 334," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(3), pages 379-383.
    8. Joseph Terza, 2009. "Parametric Nonlinear Regression with Endogenous Switching," Econometric Reviews, Taylor & Francis Journals, vol. 28(6), pages 555-580.
    9. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, April.
    10. Kopp, Raymond J. & Mullahy, John, 1990. "Moment-based estimation and testing of stochastic frontier models," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 165-183.
    11. Stevenson, Rodney E., 1980. "Likelihood functions for generalized stochastic frontier estimation," Journal of Econometrics, Elsevier, vol. 13(1), pages 57-66, May.
    12. Sanzidur Rahman & Aree Wiboonpongse & Songsak Sriboonchitta & Yaovarate Chaovanapoonphol, 2009. "Production Efficiency of Jasmine Rice Producers in Northern and North‐eastern Thailand," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(2), pages 419-435, June.
    13. Van de Ven, Wynand P. M. M. & Van Praag, Bernard M. S., 1981. "The demand for deductibles in private health insurance : A probit model with sample selection," Journal of Econometrics, Elsevier, vol. 17(2), pages 229-252, November.
    14. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    15. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    16. R. Winkelmann, 1998. "Count data models with selectivity," Econometric Reviews, Taylor & Francis Journals, vol. 17(4), pages 339-359.
    17. Kaparakis, Emmanuel I & Miller, Stephen M & Noulas, Athanasios G, 1994. "Short-Run Cost Inefficiency of Commercial Banks: A Flexible Stochastic Frontier Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 26(4), pages 875-893, November.
    18. W. David Bradford & Andrew N. Kleit & Marie A. Krousel-Wood & Richard N. Re, 2001. "Stochastic Frontier Estimation Of Cost Models Within The Hospital," The Review of Economics and Statistics, MIT Press, vol. 83(2), pages 302-309, May.
    19. Newhouse, Joseph P., 1994. "Frontier estimation: How useful a tool for health economics?," Journal of Health Economics, Elsevier, vol. 13(3), pages 317-322, October.
    20. Boyes, William J. & Hoffman, Dennis L. & Low, Stuart A., 1989. "An econometric analysis of the bank credit scoring problem," Journal of Econometrics, Elsevier, vol. 40(1), pages 3-14, January.
    21. Wang, Hung-Jen, 2006. "Stochastic frontier models," MPRA Paper 31079, University Library of Munich, Germany.
    22. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    23. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boris E. Bravo‐Ureta & Mario González‐Flores & William Greene & Daniel Solís, 2021. "Technology and Technical Efficiency Change: Evidence from a Difference in Differences Selectivity Corrected Stochastic Production Frontier Model," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(1), pages 362-385, January.
    2. Maria Vrachioli & Spiro E. Stefanou & Vangelis Tzouvelekas, 2021. "Impact Evaluation of Alternative Irrigation Technology in Crete: Correcting for Selectivity Bias," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(3), pages 551-574, July.
    3. Boris Bravo-Ureta & William Greene & Daniel Solís, 2012. "Technical efficiency analysis correcting for biases from observed and unobserved variables: an application to a natural resource management project," Empirical Economics, Springer, vol. 43(1), pages 55-72, August.
    4. Md Abdur Rouf, 2020. "Evaluation of Agricultural Projects by Parametric Cost Efficiency and Productivity-gap Approaches: An Empirical Study of Flood Control and Drainage Systems in the Southwest Coastal Area of Bangladesh," Japanese Journal of Agricultural Economics (formerly Japanese Journal of Rural Economics), Agricultural Economics Society of Japan (AESJ), vol. 22.
    5. Federico Belotti & Silvio Daidone & Giuseppe Ilardi & Vincenzo Atella, 2013. "Stochastic frontier analysis using Stata," Stata Journal, StataCorp LP, vol. 13(4), pages 718-758, December.
    6. Ángel Martín-Román & Alfonso Moral, 2017. "A methodological proposal to evaluate the cost of duration moral hazard in workplace accident insurance," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 18(9), pages 1181-1198, December.
    7. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    8. Willam Greene, 2005. "Fixed and Random Effects in Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 23(1), pages 7-32, January.
    9. Massimo Filippini & William Greene, 2016. "Persistent and transient productive inefficiency: a maximum simulated likelihood approach," Journal of Productivity Analysis, Springer, vol. 45(2), pages 187-196, April.
    10. Gian Carlo Scarsi, 1999. "Local Electricity Distribution in Italy: Comparative Efficiency Analysis and Methodological Cross-Checking," Working Papers 1999.16, Fondazione Eni Enrico Mattei.
    11. Eduardo Fé & Richard Hofler, 2013. "Count data stochastic frontier models, with an application to the patents–R&D relationship," Journal of Productivity Analysis, Springer, vol. 39(3), pages 271-284, June.
    12. German Blanco, 2017. "Who benefits from job placement services? A two-sided analysis," Journal of Productivity Analysis, Springer, vol. 47(1), pages 33-47, February.
    13. Tim J. Coelli, 1995. "Recent Developments In Frontier Modelling And Efficiency Measurement," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 39(3), pages 219-245, December.
    14. Afanasiev, Mikhail, 2007. "A Stochastic Frontier Model of a Scientist’s Production Potential," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 6(2), pages 36-59.
    15. Althaler, Karl S. & Slavova, Tatjana, 2000. "DEA Problems under Geometrical or Probability Uncertainties of Sample Data," Economics Series 89, Institute for Advanced Studies.
    16. Coll Serrano, V. & Blasco Blasco, O.Mª., 2009. "Evolución de la eficiencia técnica de la industria textil española en el periodo 1995-2005. Análisis mediante un modelo frontera estocástica/Technical Efficiency In The Textile Industry Of Spain In Th," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 27, pages 779(32á)-77, Diciembre.
    17. Subal Kumbhakar & Gudbrand Lien & J. Hardaker, 2014. "Technical efficiency in competing panel data models: a study of Norwegian grain farming," Journal of Productivity Analysis, Springer, vol. 41(2), pages 321-337, April.
    18. Afanasiev, Mikhail, 2006. "A Model of the Production Potential with Managed Factors of Inefficiency," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 4(4), pages 74-89.
    19. Giannis Karagiannis & Vangelis Tzouvelekas, 1999. "Measuring Technical Efficiency with Panel Data: Results from Competing Models," Working Papers 9914, University of Crete, Department of Economics.
    20. Michael D. Rosko, 2001. "Cost efficiency of US hospitals: a stochastic frontier approach," Health Economics, John Wiley & Sons, Ltd., vol. 10(6), pages 539-551, September.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ste:nystbu:08-9. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/ednyuus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Amanda Murphy (email available below). General contact details of provider: https://edirc.repec.org/data/ednyuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.