IDEAS home Printed from
   My bibliography  Save this article

State estimation of a shop floor using improved resampling rules for particle filtering


  • Celik, Nurcin
  • Son, Young-Jun


Operational inefficiencies in supply chains cost industries millions of dollars every year. Much of these inefficiencies arise due to the lack of a coherent planning and control mechanism, which requires accurate yet timely state estimation of these large-scale dynamic systems given their massive datasets. While Bayesian inferencing procedures based on particle filtering paradigm may meet these requirements in state estimation, they may end up in a situation called degeneracy, where a single particle abruptly possesses significant amount of normalized weights. Resampling rules for importance sampling prevent the sampling procedure from generating degenerated weights for particles. In this work, we propose two new resampling rules concerning minimized variance (VRR) and minimized bias (BRR). The proposed rules are derived theoretically and their performances are benchmarked against that of the minimized variance and half-width based resampling rules existing in the literature using a simulation of a semiconductor die manufacturing shop floor in terms of their resampling qualities (mean and variance of root mean square errors) and computational efficiencies, where we identify the circumstances that the proposed resampling rules become particularly useful.

Suggested Citation

  • Celik, Nurcin & Son, Young-Jun, 2011. "State estimation of a shop floor using improved resampling rules for particle filtering," International Journal of Production Economics, Elsevier, vol. 134(1), pages 224-237, November.
  • Handle: RePEc:eee:proeco:v:134:y:2011:i:1:p:224-237

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Roberto Casarin & Domenico Sartore, 2007. "Matrix-State Particle Filter for Wishart Stochastic Volatility Processes," Working Papers 2007_30, Department of Economics, University of Venice "Ca' Foscari".
    2. Flury, Thomas & Shephard, Neil, 2011. "Bayesian Inference Based Only On Simulated Likelihood: Particle Filter Analysis Of Dynamic Economic Models," Econometric Theory, Cambridge University Press, vol. 27(05), pages 933-956, October.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:134:y:2011:i:1:p:224-237. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.