IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v112y2022ics0140988322002985.html
   My bibliography  Save this article

Energy security versus food security: An analysis of fuel ethanol- related markets using the spillover index and partial wavelet coherence approaches

Author

Listed:
  • Guo, Jin
  • Tanaka, Tetsuji

Abstract

The recent surge in biofuel production has caused concern about energy and food security. Most of the literature related to the “fuel vs. food” issue has paid close attention to futures markets, in which commodity price volatilities are greatly increased by the many non-commercial traders that are responsible for differences in price movements between financial and non-financial markets, such as retail, wholesale, and farm-gate markets. This analysis focused on the wholesale and producer prices of fuel ethanol, gasoline, and corn to analyze the interrelations among the three commodity markets from January 2001 to December 2020. We applied the spillover index and partial wavelet coherence methods, which have rarely been used in this research area, and obtained results that were largely consistent. Our primary findings are as follows: First, gasoline and ethanol price returns tend to be positively correlated with the corn price return in the short term. Second, the price return of gasoline is positively related to the corn price return in the medium and long terms, while the price return of ethanol is negatively related to the corn price return in the medium term. Finally, there is evidence that the price returns of gasoline positively lead the price return in all the frequency domains. The results suggest that while biofuel policy in the US enhances the country's energy independence, the strategy adversely affects the access, stability, and availability of the country's food security. The repeal of the US Energy Policy Act and Energy Independence and Security Act would bring about a double dividend: higher efficiency of resource allocation and improved food security.

Suggested Citation

  • Guo, Jin & Tanaka, Tetsuji, 2022. "Energy security versus food security: An analysis of fuel ethanol- related markets using the spillover index and partial wavelet coherence approaches," Energy Economics, Elsevier, vol. 112(C).
  • Handle: RePEc:eee:eneeco:v:112:y:2022:i:c:s0140988322002985
    DOI: 10.1016/j.eneco.2022.106142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322002985
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.106142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bilgili, Faik & Koçak, Emrah & Kuşkaya, Sevda & Bulut, Ümit, 2020. "Estimation of the co-movements between biofuel production and food prices: A wavelet-based analysis," Energy, Elsevier, vol. 213(C).
    2. Saghaian, Sayed H., 2010. "The Impact of the Oil Sector on Commodity Prices: Correlation or Causation?," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 42(3), pages 477-485, August.
    3. Serra, Teresa & Gil, José M., 2012. "Biodiesel as a motor fuel price stabilization mechanism," Energy Policy, Elsevier, vol. 50(C), pages 689-698.
    4. Aguiar-Conraria, Luis & Martins, Manuel M.F. & Soares, Maria Joana, 2018. "Estimating the Taylor rule in the time-frequency domain," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 122-137.
    5. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    6. Ziegelback, Martin & Kastner, Gregor, 2011. "European Rapeseed And Fossil Diesel: Threshold Cointegration Analysis And Possible Implications," 51st Annual Conference, Halle, Germany, September 28-30, 2011 114741, German Association of Agricultural Economists (GEWISOLA).
    7. Vacha, Lukas & Barunik, Jozef, 2012. "Co-movement of energy commodities revisited: Evidence from wavelet coherence analysis," Energy Economics, Elsevier, vol. 34(1), pages 241-247.
    8. Wixson, Sarah E. & Katchova, Ani L., 2012. "Price Asymmetric Relationships in Commodity and Energy Markets," 123rd Seminar, February 23-24, 2012, Dublin, Ireland 122553, European Association of Agricultural Economists.
    9. Mensi, Walid & Hammoudeh, Shawkat & Al-Jarrah, Idries Mohammad Wanas & Sensoy, Ahmet & Kang, Sang Hoon, 2017. "Dynamic risk spillovers between gold, oil prices and conventional, sustainability and Islamic equity aggregates and sectors with portfolio implications," Energy Economics, Elsevier, vol. 67(C), pages 454-475.
    10. Mallory, Mindy L. & Irwin, Scott H. & Hayes, Dermot J., 2012. "How market efficiency and the theory of storage link corn and ethanol markets," Energy Economics, Elsevier, vol. 34(6), pages 2157-2166.
    11. Baffes, John, 2007. "Oil spills on other commodities," Resources Policy, Elsevier, vol. 32(3), pages 126-134, September.
    12. Ciaian, Pavel & Kancs, d'Artis, 2011. "Food, energy and environment: Is bioenergy the missing link?," Food Policy, Elsevier, vol. 36(5), pages 571-580, October.
    13. Chowdhury, Mohammad Ashraful Ferdous & Meo, Muhammad Saeed & Uddin, Ajim & Haque, Md. Mahmudul, 2021. "Asymmetric effect of energy price on commodity price: New evidence from NARDL and time frequency wavelet approaches," Energy, Elsevier, vol. 231(C).
    14. López Cabrera, Brenda & Schulz, Franziska, 2016. "Volatility linkages between energy and agricultural commodity prices," Energy Economics, Elsevier, vol. 54(C), pages 190-203.
    15. Vacha, Lukas & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2013. "Time–frequency dynamics of biofuel–fuel–food system," Energy Economics, Elsevier, vol. 40(C), pages 233-241.
    16. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    17. Cha, Kyung Soo & Bae, Jeong Hwan, 2011. "Dynamic impacts of high oil prices on the bioethanol and feedstock markets," Energy Policy, Elsevier, vol. 39(2), pages 753-760, February.
    18. Stefan Busse & Bernhard Brümmer & Rico Ihle, 2012. "Price formation in the German biodiesel supply chain: a Markov-switching vector error-correction modeling approach," Agricultural Economics, International Association of Agricultural Economists, vol. 43(5), pages 545-560, September.
    19. Nazlioglu, Saban & Soytas, Ugur, 2011. "World oil prices and agricultural commodity prices: Evidence from an emerging market," Energy Economics, Elsevier, vol. 33(3), pages 488-496, May.
    20. Filip, Ondrej & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2019. "Food versus fuel: An updated and expanded evidence," Energy Economics, Elsevier, vol. 82(C), pages 152-166.
    21. Serra, Teresa & Zilberman, David, 2013. "Biofuel-related price transmission literature: A review," Energy Economics, Elsevier, vol. 37(C), pages 141-151.
    22. Pal, Debdatta & Mitra, Subrata K., 2017. "Time-frequency contained co-movement of crude oil and world food prices: A wavelet-based analysis," Energy Economics, Elsevier, vol. 62(C), pages 230-239.
    23. Ciaian, Pavel & Kancs, d'Artis, 2011. "Interdependencies in the energy-bioenergy-food price systems: A cointegration analysis," Resource and Energy Economics, Elsevier, vol. 33(1), pages 326-348, January.
    24. Mallory, Mindy L. & Irwin, Scott H. & Hayes, Dermot J., 2012. "How Market Efficiency and the Theory of Storage Link Corn and Ethanol Markets Energy Economics," ISU General Staff Papers 201211010700001537, Iowa State University, Department of Economics.
    25. Natanelov, Valeri & Alam, Mohammad J. & McKenzie, Andrew M. & Van Huylenbroeck, Guido, 2011. "Is there co-movement of agricultural commodities futures prices and crude oil?," Energy Policy, Elsevier, vol. 39(9), pages 4971-4984, September.
    26. Peri, Massimo & Baldi, Lucia, 2010. "Vegetable oil market and biofuel policy: An asymmetric cointegration approach," Energy Economics, Elsevier, vol. 32(3), pages 687-693, May.
    27. Luís Aguiar-Conraria & Maria Joana Soares, 2014. "The Continuous Wavelet Transform: Moving Beyond Uni- And Bivariate Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 28(2), pages 344-375, April.
    28. Teresa Serra & David Zilberman & José M. Gil & Barry K. Goodwin, 2011. "Nonlinearities in the U.S. corn‐ethanol‐oil‐gasoline price system," Agricultural Economics, International Association of Agricultural Economists, vol. 42(1), pages 35-45, January.
    29. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    30. Campiche, Jody L. & Bryant, Henry L. & Richardson, James W. & Outlaw, Joe L., 2007. "Examining the Evolving Correspondence Between Petroleum Prices and Agricultural Commodity Prices," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon 9881, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    31. Nazlioglu, Saban, 2011. "World oil and agricultural commodity prices: Evidence from nonlinear causality," Energy Policy, Elsevier, vol. 39(5), pages 2935-2943, May.
    32. Nazlioglu, Saban & Soytas, Ugur, 2012. "Oil price, agricultural commodity prices, and the dollar: A panel cointegration and causality analysis," Energy Economics, Elsevier, vol. 34(4), pages 1098-1104.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoon, Seong-Min, 2022. "On the interdependence between biofuel, fossil fuel and agricultural food prices: Evidence from quantile tests," Renewable Energy, Elsevier, vol. 199(C), pages 536-545.
    2. Hengli Wang & Hong Liu & Danyang Wang, 2022. "Agricultural Insurance, Climate Change, and Food Security: Evidence from Chinese Farmers," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    3. Liya Hau & Huiming Zhu & Muhammad Shahbaz & Ke Huang, 2023. "Quantile Dependence between Crude Oil and China’s Biofuel Feedstock Commodity Market," Sustainability, MDPI, vol. 15(11), pages 1-17, June.
    4. Abdulrasheed Zakari & Jurij Toplak & Luka Martin Tomažič, 2022. "Exploring the Relationship between Energy and Food Security in Africa with Instrumental Variables Analysis," Energies, MDPI, vol. 15(15), pages 1-14, July.
    5. Guo, Jin & Tanaka, Tetsuji, 2022. "Do biofuel production and financial speculation in agricultural commodities influence African food prices? New evidence from a TVP-VAR extended joint connectedness approach," Energy Economics, Elsevier, vol. 116(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filip, Ondrej & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2019. "Food versus fuel: An updated and expanded evidence," Energy Economics, Elsevier, vol. 82(C), pages 152-166.
    2. Karel Janda & Ladislav Kristoufek, 2019. "The relationship between fuel and food prices: Methods, outcomes, and lessons for commodity price risk management," CAMA Working Papers 2019-20, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    3. Sergio Adriani David & Claudio M. C. Inácio & José A. Tenreiro Machado, 2019. "Ethanol Prices and Agricultural Commodities: An Investigation of Their Relationship," Mathematics, MDPI, vol. 7(9), pages 1-25, August.
    4. Serra, Teresa & Zilberman, David, 2013. "Biofuel-related price transmission literature: A review," Energy Economics, Elsevier, vol. 37(C), pages 141-151.
    5. Yoon, Seong-Min, 2022. "On the interdependence between biofuel, fossil fuel and agricultural food prices: Evidence from quantile tests," Renewable Energy, Elsevier, vol. 199(C), pages 536-545.
    6. Zingbagba, Mark & Nunes, Rubens & Fadairo, Muriel, 2020. "The impact of diesel price on upstream and downstream food prices: Evidence from São Paulo," Energy Economics, Elsevier, vol. 85(C).
    7. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2014. "Oil price shocks and agricultural commodity prices," Energy Economics, Elsevier, vol. 44(C), pages 22-35.
    8. Guellil, Mohammed Seghir & Benbouziane, Mohamed, 2018. "Volatility Linkages between Agricultural Commodity Prices, Oil Prices and Real USD Exchange Rate || Vínculos de volatilidad entre precios de productos agrícolas, precios del petróleo y tipo de cambio ," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 71-83, Diciembre.
    9. Fernandez-Perez, Adrian & Frijns, Bart & Tourani-Rad, Alireza, 2016. "Contemporaneous interactions among fuel, biofuel and agricultural commodities," Energy Economics, Elsevier, vol. 58(C), pages 1-10.
    10. Karel Janda & Ladislav Krištoufek, 2019. "The Relationship Between Fuel and Food Prices: Methods and Outcomes," Annual Review of Resource Economics, Annual Reviews, vol. 11(1), pages 195-216, October.
    11. Cheng, Sheng & Cao, Yan, 2019. "On the relation between global food and crude oil prices: An empirical investigation in a nonlinear framework," Energy Economics, Elsevier, vol. 81(C), pages 422-432.
    12. Dalheimer, Bernhard & Herwartz, Helmut & Lange, Alexander, 2021. "The threat of oil market turmoils to food price stability in Sub-Saharan Africa," Energy Economics, Elsevier, vol. 93(C).
    13. Kang, Sang Hoon & Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu & Yoon, Seong-Min, 2019. "Exploring the time-frequency connectedness and network among crude oil and agriculture commodities V1," Energy Economics, Elsevier, vol. 84(C).
    14. Ji, Qiang & Bouri, Elie & Roubaud, David & Shahzad, Syed Jawad Hussain, 2018. "Risk spillover between energy and agricultural commodity markets: A dependence-switching CoVaR-copula model," Energy Economics, Elsevier, vol. 75(C), pages 14-27.
    15. Ahmadi, Maryam & Bashiri Behmiri, Niaz & Manera, Matteo, 2016. "How is volatility in commodity markets linked to oil price shocks?," Energy Economics, Elsevier, vol. 59(C), pages 11-23.
    16. Papież, Monika, 2014. "A dynamic analysis of causality between prices of corn, crude oil and ethanol," MPRA Paper 56540, University Library of Munich, Germany.
    17. Hanif, Waqas & Areola Hernandez, Jose & Shahzad, Syed Jawad Hussain & Yoon, Seong-Min, 2021. "Tail dependence risk and spillovers between oil and food prices," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 195-209.
    18. Wei Su, Chi & Wang, Xiao-Qing & Tao, Ran & Oana-Ramona, Lobonţ, 2019. "Do oil prices drive agricultural commodity prices? Further evidence in a global bio-energy context," Energy, Elsevier, vol. 172(C), pages 691-701.
    19. Ben Amar, Amine & Goutte, Stéphane & Isleimeyyeh, Mohammad, 2022. "Asymmetric cyclical connectedness on the commodity markets: Further insights from bull and bear markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 85(C), pages 386-400.
    20. Guhathakurta, Kousik & Dash, Saumya Ranjan & Maitra, Debasish, 2020. "Period specific volatility spillover based connectedness between oil and other commodity prices and their portfolio implications," Energy Economics, Elsevier, vol. 85(C).

    More about this item

    Keywords

    Wavelet analyses; Dynamic connectedness; Bioethanol; Corn; Gasoline;
    All these keywords.

    JEL classification:

    • Q13 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Markets and Marketing; Cooperatives; Agribusiness
    • Q18 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Policy; Food Policy; Animal Welfare Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:112:y:2022:i:c:s0140988322002985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.