IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v244y2015i1p248-260.html
   My bibliography  Save this article

CRM in social media: Predicting increases in Facebook usage frequency

Author

Listed:
  • Ballings, Michel
  • Van den Poel, Dirk

Abstract

The purpose of this study is to (1) assess the feasibility of predicting increases in Facebook usage frequency, (2) evaluate which algorithms perform best, (3) and determine which predictors are most important. We benchmark the performance of Logistic Regression, Random Forest, Stochastic Adaptive Boosting, Kernel Factory, Neural Networks and Support Vector Machines using five times twofold cross-validation. The results indicate that it is feasible to create models with high predictive performance. The top performing algorithm was Stochastic Adaptive Boosting with a cross-validated AUC of 0.66 and accuracy of 0.74. The most important predictors include deviation from regular usage patterns, frequencies of likes of specific categories and group memberships, average photo album privacy settings, and recency of comments. Facebook and other social networks alike could use predictions of increases in usage frequency to customize its services such as pacing the rate of advertisements and friend recommendations, or adapting News Feed content altogether. The main contribution of this study is that it is the first to assess the prediction of increases in usage frequency in a social network.

Suggested Citation

  • Ballings, Michel & Van den Poel, Dirk, 2015. "CRM in social media: Predicting increases in Facebook usage frequency," European Journal of Operational Research, Elsevier, vol. 244(1), pages 248-260.
  • Handle: RePEc:eee:ejores:v:244:y:2015:i:1:p:248-260 DOI: 10.1016/j.ejor.2015.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715000028
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gómez, Daniel & Figueira, José Rui & Eusébio, Augusto, 2013. "Modeling centrality measures in social network analysis using bi-criteria network flow optimization problems," European Journal of Operational Research, Elsevier, vol. 226(2), pages 354-365.
    2. Peter E. Rossi & Robert E. McCulloch & Greg M. Allenby, 1996. "The Value of Purchase History Data in Target Marketing," Marketing Science, INFORMS, vol. 15(4), pages 321-340.
    3. Vera Miguéis & Dirk Poel & Ana Camanho & João Falcão e Cunha, 2012. "Predicting partial customer churn using Markov for discrimination for modeling first purchase sequences," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(4), pages 337-353, December.
    4. D. F. Benoit & D. Van Den Poel, 2012. "Improving Customer Retention In Financial Services Using Kinship Network Information," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/786, Ghent University, Faculty of Economics and Business Administration.
    5. Hellmann, Tim & Staudigl, Mathias, 2014. "Evolution of social networks," European Journal of Operational Research, Elsevier, pages 583-596.
    6. K.W. De Bock & D. Van den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Post-Print hal-00800160, HAL.
    7. Buckinx, Wouter & Van den Poel, Dirk, 2005. "Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting," European Journal of Operational Research, Elsevier, vol. 164(1), pages 252-268, July.
    8. Van den Poel, Dirk & Buckinx, Wouter, 2005. "Predicting online-purchasing behaviour," European Journal of Operational Research, Elsevier, vol. 166(2), pages 557-575, October.
    9. Baesens, Bart & Verstraeten, Geert & Van den Poel, Dirk & Egmont-Petersen, Michael & Van Kenhove, Patrick & Vanthienen, Jan, 2004. "Bayesian network classifiers for identifying the slope of the customer lifecycle of long-life customers," European Journal of Operational Research, Elsevier, vol. 156(2), pages 508-523, July.
    10. Madden, Gary & Savage, Scott J. & Coble-Neal, Grant, 1999. "Subscriber churn in the Australian ISP market," Information Economics and Policy, Elsevier, vol. 11(2), pages 195-207, July.
    11. Venkatesh, Kamini & Ravi, Vadlamani & Prinzie, Anita & Poel, Dirk Van den, 2014. "Cash demand forecasting in ATMs by clustering and neural networks," European Journal of Operational Research, Elsevier, vol. 232(2), pages 383-392.
    12. K. W. De Bock & D. Van Den Poel, 2012. "Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/805, Ghent University, Faculty of Economics and Business Administration.
    13. D. Thorleuchter & D. Van Den Poel & A. Prinzie, 2011. "Analyzing existing customers’ websites to improve the customer acquisition process as well as the profitability prediction in B-to-B marketing," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/733, Ghent University, Faculty of Economics and Business Administration.
    14. K.W. De Bock & D. Van den Poel, 2012. "Reconciling performance and interpretability in customer churn prediction modeling using ensemble learning based on generalized additive models," Post-Print hal-00800148, HAL.
    15. Sinan Aral & Dylan Walker, 2011. "Creating Social Contagion Through Viral Product Design: A Randomized Trial of Peer Influence in Networks," Management Science, INFORMS, vol. 57(9), pages 1623-1639, February.
    16. K. Coussement & D. Van den Poel, 2009. "Improving customer attrition prediction by integrating emotions from client/company interaction emails and evaluating multiple classifiers," Post-Print halshs-00581595, HAL.
    17. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    18. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    19. Van den Poel, Dirk & Lariviere, Bart, 2004. "Customer attrition analysis for financial services using proportional hazard models," European Journal of Operational Research, Elsevier, vol. 157(1), pages 196-217, August.
    20. Wesley Hartmann & Puneet Manchanda & Harikesh Nair & Matthew Bothner & Peter Dodds & David Godes & Kartik Hosanagar & Catherine Tucker, 2008. "Modeling social interactions: Identification, empirical methods and policy implications," Marketing Letters, Springer, vol. 19(3), pages 287-304, December.
    21. M. Ballings & D. Van Den Poel, 2012. "The Relevant Length of Customer Event History for Churn Prediction: How long is long enough?," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/804, Ghent University, Faculty of Economics and Business Administration.
    22. Lemmens, A. & Croux, C., 2006. "Bagging and boosting classification trees to predict churn," Other publications TiSEM d5cb664d-5859-44db-a621-e, Tilburg University, School of Economics and Management.
    23. V. L. Miguéis & D. Van Den Poel & A.S. Camanho & J. Falcao E Cunha, 2012. "Modeling Partial Customer Churn: On the Value of First Product-Category Purchase Sequences," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/790, Ghent University, Faculty of Economics and Business Administration.
    24. Ruth N. Bolton, 1998. "A Dynamic Model of the Duration of the Customer's Relationship with a Continuous Service Provider: The Role of Satisfaction," Marketing Science, INFORMS, pages 45-65.
    25. Dudyala Anil Kumar & V. Ravi, 2008. "Predicting credit card customer churn in banks using data mining," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 1(1), pages 4-28.
    26. K. Coussement & D. Van Den Poel, 2008. "Improving Customer Attrition Prediction by Integrating Emotions from Client/Company Interaction Emails and Evaluating Multiple Classifiers," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 08/527, Ghent University, Faculty of Economics and Business Administration.
    27. Martin-Barragan, Belen & Lillo, Rosa & Romo, Juan, 2014. "Interpretable support vector machines for functional data," European Journal of Operational Research, Elsevier, vol. 232(1), pages 146-155.
    28. K. Coussement & D. Van den Poel, 2008. "Churn prediction in subscription services: an application of support vector machines while comparing two parameter-selection techniques," Post-Print hal-00788096, HAL.
    29. Glady, Nicolas & Baesens, Bart & Croux, Christophe, 2009. "Modeling churn using customer lifetime value," European Journal of Operational Research, Elsevier, vol. 197(1), pages 402-411, August.
    30. K. Coussement & D.F. Benoît & D. Van den Poel, 2010. "Improved marketing decision making in a customer churn prediction context using generalized additive models," Post-Print halshs-00581701, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yongli & Luo, Peng & Fan, Zhi-ping & Chen, Kun & Liu, Jiaguo, 2017. "A utility-based link prediction method in social networks," European Journal of Operational Research, Elsevier, vol. 260(2), pages 693-705.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:244:y:2015:i:1:p:248-260. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.