IDEAS home Printed from https://ideas.repec.org/a/ids/injdan/v1y2008i1p4-28.html
   My bibliography  Save this article

Predicting credit card customer churn in banks using data mining

Author

Listed:
  • Dudyala Anil Kumar
  • V. Ravi

Abstract

In this paper, we solve the customer credit card churn prediction via data mining. We developed an ensemble system incorporating majority voting and involving Multilayer Perceptron (MLP), Logistic Regression (LR), decision trees (J48), Random Forest (RF), Radial Basis Function (RBF) network and Support Vector Machine (SVM) as the constituents. The dataset was taken from the Business Intelligence Cup organised by the University of Chile in 2004. Since it is a highly unbalanced dataset with 93% loyal and 7% churned customers, we employed (1) undersampling, (2) oversampling, (3) a combination of undersampling and oversampling and (4) the Synthetic Minority Oversampling Technique (SMOTE) for balancing it. Furthermore, tenfold cross-validation was employed. The results indicated that SMOTE achieved good overall accuracy. Also, SMOTE and a combination of undersampling and oversampling improved the sensitivity and overall accuracy in majority voting. In addition, the Classification and Regression Tree (CART) was used for the purpose of feature selection. The reduced feature set was fed to the classifiers mentioned above. Thus, this paper outlines the most important predictor variables in solving the credit card churn prediction problem. Moreover, the rules generated by decision tree J48 act as an early warning expert system.

Suggested Citation

  • Dudyala Anil Kumar & V. Ravi, 2008. "Predicting credit card customer churn in banks using data mining," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 1(1), pages 4-28.
  • Handle: RePEc:ids:injdan:v:1:y:2008:i:1:p:4-28
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=20020
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manolis Maragoudakis & Dimitrios Serpanos, 2016. "Exploiting Financial News and Social Media Opinions for Stock Market Analysis using MCMC Bayesian Inference," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 589-622, April.
    2. Owen P. Hall Jr. & Darrol J. Stanley, 2012. "A comparative modelling analysis of firm performance," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 4(1), pages 43-56.
    3. Verbeke, Wouter & Dejaeger, Karel & Martens, David & Hur, Joon & Baesens, Bart, 2012. "New insights into churn prediction in the telecommunication sector: A profit driven data mining approach," European Journal of Operational Research, Elsevier, vol. 218(1), pages 211-229.
    4. repec:spr:fininn:v:2:y:2016:i:1:d:10.1186_s40854-016-0029-6 is not listed on IDEAS
    5. Vera Miguéis & Dirk Poel & Ana Camanho & João Falcão e Cunha, 2012. "Predicting partial customer churn using Markov for discrimination for modeling first purchase sequences," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(4), pages 337-353, December.
    6. Ballings, Michel & Van den Poel, Dirk, 2015. "CRM in social media: Predicting increases in Facebook usage frequency," European Journal of Operational Research, Elsevier, vol. 244(1), pages 248-260.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:injdan:v:1:y:2008:i:1:p:4-28. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Darren Simpson). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=282 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.