IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00800160.html

An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction

Author

Listed:
  • K.W. de Bock

    (LEM - Lille - Economie et Management - Université de Lille, Sciences et Technologies - CNRS - Centre National de la Recherche Scientifique)

  • D. van den Poel

Abstract

Several studies have demonstrated the superior performance of ensemble classification algorithms, whereby multiple member classifiers are combined into one aggregated and powerful classification model, over single models. In this paper, two rotation-based ensemble classifiers are proposed as modeling techniques for customer churn prediction. In Rotation Forests, feature extraction is applied to feature subsets in order to rotate the input data for training base classifiers, while RotBoost combines Rotation Forest with AdaBoost. In an experimental validation based on data sets from four real-life customer churn prediction projects, Rotation Forest and RotBoost are compared to a set of well-known benchmark classifiers. Moreover, variations of Rotation Forest and RotBoost are compared, implementing three alternative feature extraction algorithms: Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Sparse Random Projections (SRP). The performance of rotation-based ensemble classifier is found to depend upon (i) the performance criterion used to measure classification performance, and (ii) the implemented feature extraction algorithm. In terms of accuracy, RotBoost outperforms Rotation Forest, but none of the considered variations offers a clear advantage over the benchmark algorithms. However, in terms of AUC and top-decile lift, results clearly demonstrate the competitive performance of Rotation Forests compared to the benchmark algorithms. Moreover, ICA3 based Rotation Forests outperform all other considered classifiers and are therefore recommended as a well-suited alternative classification technique for the prediction of customer churn that allows for improved marketing decision making.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • K.W. de Bock & D. van den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Post-Print hal-00800160, HAL.
  • Handle: RePEc:hal:journl:hal-00800160
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. K. W. De Bock & D. Van Den Poel, 2012. "Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/805, Ghent University, Faculty of Economics and Business Administration.
    2. Soyoung Park & Se-Yeong Hamm & Jinsoo Kim, 2019. "Performance Evaluation of the GIS-Based Data-Mining Techniques Decision Tree, Random Forest, and Rotation Forest for Landslide Susceptibility Modeling," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    3. Matthias Bogaert & Michel Ballings & Martijn Hosten & Dirk Van den Poel, 2017. "Identifying Soccer Players on Facebook Through Predictive Analytics," Decision Analysis, INFORMS, vol. 14(4), pages 274-297, December.
    4. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    5. Arno Caigny & Kristof Coussement & Matthijs Meire & Steven Hoornaert, 2025. "Investigating the impact of undersampling and bagging: an empirical investigation for customer attrition modeling," Annals of Operations Research, Springer, vol. 346(3), pages 2401-2421, March.
    6. Liu, Zhenkun & Jiang, Ping & De Bock, Koen W. & Wang, Jianzhou & Zhang, Lifang & Niu, Xinsong, 2024. "Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    7. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    8. M. Ballings & D. Van Den Poel, 2012. "The Relevant Length of Customer Event History for Churn Prediction: How long is long enough?," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/804, Ghent University, Faculty of Economics and Business Administration.
    9. Blaser, Rico & Fryzlewicz, Piotr, 2016. "Random rotation ensembles," LSE Research Online Documents on Economics 62182, London School of Economics and Political Science, LSE Library.
    10. Rudzītis Normunds & Čevers Aldis, 2015. "Development of Customs Fiscal Function in Latvia," Acta Universitatis Sapientiae, Economics and Business, Sciendo, vol. 27(1), pages 23-28, December.
    11. Amin, Adnan & Al-Obeidat, Feras & Shah, Babar & Adnan, Awais & Loo, Jonathan & Anwar, Sajid, 2019. "Customer churn prediction in telecommunication industry using data certainty," Journal of Business Research, Elsevier, vol. 94(C), pages 290-301.
    12. Amalia Vanacore & Maria Sole Pellegrino & Armando Ciardiello, 2024. "Fair evaluation of classifier predictive performance based on binary confusion matrix," Computational Statistics, Springer, vol. 39(1), pages 363-383, February.
    13. Ballings, Michel & Van den Poel, Dirk, 2015. "CRM in social media: Predicting increases in Facebook usage frequency," European Journal of Operational Research, Elsevier, vol. 244(1), pages 248-260.
    14. Aimée Backiel & Bart Baesens & Gerda Claeskens, 2016. "Predicting time-to-churn of prepaid mobile telephone customers using social network analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(9), pages 1135-1145, September.
    15. Schaeffer, Satu Elisa & Rodriguez Sanchez, Sara Veronica, 2020. "Forecasting client retention — A machine-learning approach," Journal of Retailing and Consumer Services, Elsevier, vol. 52(C).
    16. Muhammad Azeem & Muhammad Usman & A. C. M. Fong, 2017. "A churn prediction model for prepaid customers in telecom using fuzzy classifiers," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 66(4), pages 603-614, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00800160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.