IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v94y2019icp290-301.html
   My bibliography  Save this article

Customer churn prediction in telecommunication industry using data certainty

Author

Listed:
  • Amin, Adnan
  • Al-Obeidat, Feras
  • Shah, Babar
  • Adnan, Awais
  • Loo, Jonathan
  • Anwar, Sajid

Abstract

Customer Churn Prediction (CCP) is a challenging activity for decision makers and machine learning community because most of the time, churn and non-churn customers have resembling features. From different experiments on customer churn and related data, it can be seen that a classifier shows different accuracy levels for different zones of a dataset. In such situations, a correlation can easily be observed in the level of classifier's accuracy and certainty of its prediction. If a mechanism can be defined to estimate the classifier's certainty for different zones within the data, then the expected classifier's accuracy can be estimated even before the classification. In this paper, a novel CCP approach is presented based on the above concept of classifier's certainty estimation using distance factor. The dataset is grouped into different zones based on the distance factor which are then divided into two categories as; (i) data with high certainty, and (ii) data with low certainty, for predicting customers exhibiting Churn and Non-churn behavior. Using different state-of-the-art evaluation measures (e.g., accuracy, f-measure, precision and recall) on different publicly available the Telecommunication Industry (TCI) datasets show that (i) the distance factor is strongly co-related with the certainty of the classifier, and (ii) the classifier obtained high accuracy in the zone with greater distance factor's value (i.e., customer churn and non-churn with high certainty) than those placed in the zone with smaller distance factor's value (i.e., customer churn and non-churn with low certainty).

Suggested Citation

  • Amin, Adnan & Al-Obeidat, Feras & Shah, Babar & Adnan, Awais & Loo, Jonathan & Anwar, Sajid, 2019. "Customer churn prediction in telecommunication industry using data certainty," Journal of Business Research, Elsevier, vol. 94(C), pages 290-301.
  • Handle: RePEc:eee:jbrese:v:94:y:2019:i:c:p:290-301
    DOI: 10.1016/j.jbusres.2018.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296318301231
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2018.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. W. De Bock & D. Van Den Poel, 2012. "Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/805, Ghent University, Faculty of Economics and Business Administration.
    2. Haenlein, Michael, 2013. "Social interactions in customer churn decisions: The impact of relationship directionality," International Journal of Research in Marketing, Elsevier, vol. 30(3), pages 236-248.
    3. K. W. De Bock & D. Van Den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/717, Ghent University, Faculty of Economics and Business Administration.
    4. K.W. de Bock & D. van den Poel, 2012. "Reconciling performance and interpretability in customer churn prediction modeling using ensemble learning based on generalized additive models," Post-Print hal-00800148, HAL.
    5. Kristof Coussement & Stefan Lessmann & Geert Verstraeten, 2017. "A comparative analysis of data preparation algorithms for customer churn prediction: A case study in the telecommunication industry," Post-Print hal-01745261, HAL.
    6. Athanassopoulos, Antreas D., 2000. "Customer Satisfaction Cues To Support Market Segmentation and Explain Switching Behavior," Journal of Business Research, Elsevier, vol. 47(3), pages 191-207, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kirgiz, Omer Bugra & Kiygi-Calli, Meltem & Cagliyor, Sendi & El Oraiby, Maryam, 2024. "Assessing the effectiveness of OTT services, branded apps, and gamified loyalty giveaways on mobile customer churn in the telecom industry: A machine-learning approach," Telecommunications Policy, Elsevier, vol. 48(8).
    2. Abedin, Mohammad Zoynul & Hajek, Petr & Sharif, Taimur & Satu, Md. Shahriare & Khan, Md. Imran, 2023. "Modelling bank customer behaviour using feature engineering and classification techniques," Research in International Business and Finance, Elsevier, vol. 65(C).
    3. Chen, Yan & Zhang, Lei & Zhao, Yulu & Xu, Bing, 2022. "Implementation of penalized survival models in churn prediction of vehicle insurance," Journal of Business Research, Elsevier, vol. 153(C), pages 162-171.
    4. Sun, Yang, 2021. "Case based models of the relationship between consumer resistance to innovation and customer churn," Journal of Retailing and Consumer Services, Elsevier, vol. 61(C).
    5. Petra Posedel v{S}imovi'c & Davor Horvatic & Edward W. Sun, 2021. "Classifying variety of customer's online engagement for churn prediction with mixed-penalty logistic regression," Papers 2105.07671, arXiv.org, revised Jul 2021.
    6. Petra P. Šimović & Claire Y. T. Chen & Edward W. Sun, 2023. "Classifying the Variety of Customers’ Online Engagement for Churn Prediction with a Mixed-Penalty Logistic Regression," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 451-485, January.
    7. Ebru Pekel Ozmen & Tuncay Ozcan, 2022. "A novel deep learning model based on convolutional neural networks for employee churn prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 539-550, April.
    8. Jalal Rabbah & Mohammed Ridouani & Larbi Hassouni, 2022. "A New Churn Prediction Model Based on Deep Insight Features Transformation for Convolution Neural Network Architecture and Stacknet," International Journal of Web-Based Learning and Teaching Technologies (IJWLTT), IGI Global, vol. 17(1), pages 1-18, January.
    9. Villarroel Ordenes, Francisco & Silipo, Rosaria, 2021. "Machine learning for marketing on the KNIME Hub: The development of a live repository for marketing applications," Journal of Business Research, Elsevier, vol. 137(C), pages 393-410.
    10. Zihayat, Morteza & Ayanso, Anteneh & Davoudi, Heidar & Kargar, Mehdi & Mengesha, Nigussie, 2021. "Leveraging non-respondent data in customer satisfaction modeling," Journal of Business Research, Elsevier, vol. 135(C), pages 112-126.
    11. Jeremy K. Nguyen & Adam Karg & Abbas Valadkhani & Heath McDonald, 2022. "Predicting individual event attendance with machine learning: a ‘step-forward’ approach," Applied Economics, Taylor & Francis Journals, vol. 54(27), pages 3138-3153, June.
    12. Feng, Yi & Yin, Yunqiang & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Marra, Marianna & Guo, Yihan, 2024. "Enhancing e-commerce customer churn management with a profit- and AUC-focused prescriptive analytics approach," Journal of Business Research, Elsevier, vol. 184(C).
    13. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    14. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2021. "A multi-period analysis of the integrated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 292(2), pages 483-499.
    15. Lewlisa Saha & Hrudaya Kumar Tripathy & Tarek Gaber & Hatem El-Gohary & El-Sayed M. El-kenawy, 2023. "Deep Churn Prediction Method for Telecommunication Industry," Sustainability, MDPI, vol. 15(5), pages 1-21, March.
    16. Yunjie Liu & Mu Shengdong & Gu Jijian & Nadia Nedjah, 2022. "Intelligent Prediction of Customer Churn with a Fused Attentional Deep Learning Model," Mathematics, MDPI, vol. 10(24), pages 1-16, December.
    17. Hugo Ribeiro & Belém Barbosa & António C. Moreira & Ricardo Rodrigues, 2024. "A closer look at customer experience with bundle telecommunication services and its impacts on satisfaction and switching intention," Journal of Marketing Analytics, Palgrave Macmillan, vol. 12(3), pages 668-686, September.
    18. Lamrhari, Soumaya & Ghazi, Hamid El & Oubrich, Mourad & Faker, Abdellatif El, 2022. "A social CRM analytic framework for improving customer retention, acquisition, and conversion," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    19. Thangeda, Rahul & Kumar, Niraj & Majhi, Ritanjali, 2024. "A neural network-based predictive decision model for customer retention in the telecommunication sector," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    20. Lewlisa Saha & Hrudaya Kumar Tripathy & Soumya Ranjan Nayak & Akash Kumar Bhoi & Paolo Barsocchi, 2021. "Amalgamation of Customer Relationship Management and Data Analytics in Different Business Sectors—A Systematic Literature Review," Sustainability, MDPI, vol. 13(9), pages 1-35, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    2. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    3. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    4. Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
    5. Gattermann-Itschert, Theresa & Thonemann, Ulrich W., 2021. "How training on multiple time slices improves performance in churn prediction," European Journal of Operational Research, Elsevier, vol. 295(2), pages 664-674.
    6. Ballings, Michel & Van den Poel, Dirk, 2015. "CRM in social media: Predicting increases in Facebook usage frequency," European Journal of Operational Research, Elsevier, vol. 244(1), pages 248-260.
    7. Schaeffer, Satu Elisa & Rodriguez Sanchez, Sara Veronica, 2020. "Forecasting client retention — A machine-learning approach," Journal of Retailing and Consumer Services, Elsevier, vol. 52(C).
    8. Koen W. de Bock & Arno de Caigny, 2021. "Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling," Post-Print hal-03391564, HAL.
    9. Benítez-Peña, Sandra & Blanquero, Rafael & Carrizosa, Emilio & Ramírez-Cobo, Pepa, 2024. "Cost-sensitive probabilistic predictions for support vector machines," European Journal of Operational Research, Elsevier, vol. 314(1), pages 268-279.
    10. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
    11. Arno de Caigny & Kristof Coussement & Koen de Bock, 2020. "Leveraging fine-grained transaction data for customer life event predictions," Post-Print hal-02507998, HAL.
    12. Liu, Zhenkun & Jiang, Ping & De Bock, Koen W. & Wang, Jianzhou & Zhang, Lifang & Niu, Xinsong, 2024. "Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    13. Amin, Adnan & Shah, Babar & Khattak, Asad Masood & Lopes Moreira, Fernando Joaquim & Ali, Gohar & Rocha, Alvaro & Anwar, Sajid, 2019. "Cross-company customer churn prediction in telecommunication: A comparison of data transformation methods," International Journal of Information Management, Elsevier, vol. 46(C), pages 304-319.
    14. Szeląg, Marcin & Słowiński, Roman, 2024. "Explaining and predicting customer churn by monotonic rules induced from ordinal data," European Journal of Operational Research, Elsevier, vol. 317(2), pages 414-424.
    15. M. Ballings & D. Van Den Poel, 2012. "The Relevant Length of Customer Event History for Churn Prediction: How long is long enough?," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/804, Ghent University, Faculty of Economics and Business Administration.
    16. Tianyuan Zhang & Sérgio Moro & Ricardo F. Ramos, 2022. "A Data-Driven Approach to Improve Customer Churn Prediction Based on Telecom Customer Segmentation," Future Internet, MDPI, vol. 14(3), pages 1-19, March.
    17. Latifah Almuqren & Fatma S. Alrayes & Alexandra I. Cristea, 2021. "An Empirical Study on Customer Churn Behaviours Prediction Using Arabic Twitter Mining Approach," Future Internet, MDPI, vol. 13(7), pages 1-19, July.
    18. Risselada, Hans & Verhoef, Peter C. & Bijmolt, Tammo H.A., 2010. "Staying Power of Churn Prediction Models," Journal of Interactive Marketing, Elsevier, vol. 24(3), pages 198-208.
    19. Van den Poel, Dirk & Lariviere, Bart, 2004. "Customer attrition analysis for financial services using proportional hazard models," European Journal of Operational Research, Elsevier, vol. 157(1), pages 196-217, August.
    20. Moslehpour, Massoud & Lin, Yi Hsin & Nguyen, Thi Le Huyen, 2017. "Top purchase intention priorities of Vietnamese LCC passengers: Expectations and satisfaction," MPRA Paper 81635, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:94:y:2019:i:c:p:290-301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.