IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v13y2021i7p175-d588849.html
   My bibliography  Save this article

An Empirical Study on Customer Churn Behaviours Prediction Using Arabic Twitter Mining Approach

Author

Listed:
  • Latifah Almuqren

    (Information Systems Department, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia)

  • Fatma S. Alrayes

    (Information Systems Department, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia)

  • Alexandra I. Cristea

    (Information Systems Department, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
    Computer Science Department, University of Durham, Durham DH13LE, UK)

Abstract

With the rising growth of the telecommunication industry, the customer churn problem has grown in significance as well. One of the most critical challenges in the data and voice telecommunication service industry is retaining customers, thus reducing customer churn by increasing customer satisfaction. Telecom companies have depended on historical customer data to measure customer churn. However, historical data does not reveal current customer satisfaction or future likeliness to switch between telecom companies. The related research reveals that many studies have focused on developing churner prediction models based on historical data. These models face delay issues and lack timelines for targeting customers in real-time. In addition, these models lack the ability to tap into Arabic language social media for real-time analysis. As a result, the design of a customer churn model based on real-time analytics is needed. Therefore, this study offers a new approach to using social media mining to predict customer churn in the telecommunication field. This represents the first work using Arabic Twitter mining to predict churn in Saudi Telecom companies. The newly proposed method proved its efficiency based on various standard metrics and based on a comparison with the ground-truth actual outcomes provided by a telecom company.

Suggested Citation

  • Latifah Almuqren & Fatma S. Alrayes & Alexandra I. Cristea, 2021. "An Empirical Study on Customer Churn Behaviours Prediction Using Arabic Twitter Mining Approach," Future Internet, MDPI, vol. 13(7), pages 1-19, July.
  • Handle: RePEc:gam:jftint:v:13:y:2021:i:7:p:175-:d:588849
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/13/7/175/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/13/7/175/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haenlein, Michael, 2013. "Social interactions in customer churn decisions: The impact of relationship directionality," International Journal of Research in Marketing, Elsevier, vol. 30(3), pages 236-248.
    2. Kristof Coussement & Stefan Lessmann & Geert Verstraeten, 2017. "A comparative analysis of data preparation algorithms for customer churn prediction: A case study in the telecommunication industry," Post-Print hal-01745261, HAL.
    3. Glady, Nicolas & Baesens, Bart & Croux, Christophe, 2009. "Modeling churn using customer lifetime value," European Journal of Operational Research, Elsevier, vol. 197(1), pages 402-411, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    2. Gattermann-Itschert, Theresa & Thonemann, Ulrich W., 2021. "How training on multiple time slices improves performance in churn prediction," European Journal of Operational Research, Elsevier, vol. 295(2), pages 664-674.
    3. Lessmann, Stefan & Coussement, Kristof & De Bock, Koen W. & Haupt, Johannes, 2018. "Targeting customers for profit: An ensemble learning framework to support marketing decision making," IRTG 1792 Discussion Papers 2018-012, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    4. Uner, M.Mithat & Guven, Faruk & Cavusgil, S.Tamer, 2020. "Churn and loyalty behavior of Turkish digital natives: Empirical insights and managerial implications," Telecommunications Policy, Elsevier, vol. 44(4).
    5. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
    6. Amin, Adnan & Al-Obeidat, Feras & Shah, Babar & Adnan, Awais & Loo, Jonathan & Anwar, Sajid, 2019. "Customer churn prediction in telecommunication industry using data certainty," Journal of Business Research, Elsevier, vol. 94(C), pages 290-301.
    7. Zihayat, Morteza & Ayanso, Anteneh & Davoudi, Heidar & Kargar, Mehdi & Mengesha, Nigussie, 2021. "Leveraging non-respondent data in customer satisfaction modeling," Journal of Business Research, Elsevier, vol. 135(C), pages 112-126.
    8. Höppner, Sebastiaan & Stripling, Eugen & Baesens, Bart & Broucke, Seppe vanden & Verdonck, Tim, 2020. "Profit driven decision trees for churn prediction," European Journal of Operational Research, Elsevier, vol. 284(3), pages 920-933.
    9. Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
    10. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    11. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
    12. Johannes Habel & Sascha Alavi & Nicolas Heinitz, 2023. "A theory of predictive sales analytics adoption," AMS Review, Springer;Academy of Marketing Science, vol. 13(1), pages 34-54, June.
    13. Eva Ascarza & Scott A. Neslin & Oded Netzer & Zachery Anderson & Peter S. Fader & Sunil Gupta & Bruce G. S. Hardie & Aurélie Lemmens & Barak Libai & David Neal & Foster Provost & Rom Schrift, 2018. "In Pursuit of Enhanced Customer Retention Management: Review, Key Issues, and Future Directions," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(1), pages 65-81, March.
    14. de Wit, Jaap G. & Zuidberg, Joost, 2016. "Route churn: an analysis of low-cost carrier route continuity in Europe," Journal of Transport Geography, Elsevier, vol. 50(C), pages 57-67.
    15. Lepthien, Anke & Papies, Dominik & Clement, Michel & Melnyk, Valentyna, 2017. "The ugly side of customer management – Consumer reactions to firm-initiated contract terminations," International Journal of Research in Marketing, Elsevier, vol. 34(4), pages 829-850.
    16. Mirza Hassan Hosseini & Mahdi Rezaei, 2015. "Exploratory Study on Causes of Valuable Costumers Turnover in Irans Private Banking Industry (Case Study: Physician Specialists Society)," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 5(5), pages 251-260, May.
    17. Oğuzhan Kivrak & Cüneyt Akar, 2020. "Effect of Social Media Interactions on CLV in Telecommunications," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 447-468, March.
    18. Haupt, Johannes & Lessmann, Stefan, 2020. "Targeting Cutsomers Under Response-Dependent Costs," IRTG 1792 Discussion Papers 2020-005, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    19. K. W. De Bock & D. Van Den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/717, Ghent University, Faculty of Economics and Business Administration.
    20. K. W. De Bock & D. Van Den Poel, 2012. "Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/805, Ghent University, Faculty of Economics and Business Administration.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:13:y:2021:i:7:p:175-:d:588849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.