IDEAS home Printed from https://ideas.repec.org/p/rug/rugwps/12-805.html
   My bibliography  Save this paper

Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models

Author

Listed:
  • K. W. DE BOCK
  • D. VAN DEN POEL

Abstract

To build a successful customer churn prediction model, a classification algorithm should be chosen that fulfills two requirements: strong classification performance and a high level of model interpretability. In recent literature, ensemble classifiers have demonstrated superior performance in a multitude of applications and data mining contests. However, due to an increased complexity they result in models that are often difficult to interpret. In this study, GAMensPlus, an ensemble classifier based upon generalized additive models (GAMs), in which both performance and interpretability are reconciled, is presented and evaluated in a context of churn prediction modeling. The recently proposed GAMens, based upon Bagging, the Random Subspace Method and semiparametric GAMs as constituent classifiers, is extended to include two instruments for model interpretability: generalized feature importance scores, and bootstrap confidence bands for smoothing splines. In an experimental comparison on data sets of six real-life churn prediction projects, the competitive performance of the proposed algorithm over a set of well-known benchmark algorithms is demonstrated in terms of four evaluation metrics. Further, the ability of the technique to deliver valuable insight into the drivers of customer churn is illustrated in a case study on data from a European bank. Firstly, it is shown how the generalized feature importance scores allow the analyst to identify the importances of churn predictors in function of the criterion that is used to measure the quality of the model predictions. Secondly, the ability of GAMensPlus to identify nonlinear relationships between predictors and churn probabilities is demonstrated.

Suggested Citation

  • K. W. De Bock & D. Van Den Poel, 2012. "Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/805, Ghent University, Faculty of Economics and Business Administration.
  • Handle: RePEc:rug:rugwps:12/805
    as

    Download full text from publisher

    File URL: http://wps-feb.ugent.be/Papers/wp_12_805.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. K A Smith & R J Willis & M Brooks, 2000. "An analysis of customer retention and insurance claim patterns using data mining: a case study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(5), pages 532-541, May.
    2. Coussement, Kristof & Benoit, Dries Frederik & Van den Poel, Dirk, 2009. "Improved Marketing Decision Making in a Customer Churn Prediction Context Using Generalized Additive Models," Working Papers 2009/18, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    3. De Bock, Koen W. & Coussement, Kristof & Van den Poel, Dirk, 2010. "Ensemble classification based on generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1535-1546, June.
    4. Daniel Berg, 2007. "Bankruptcy prediction by generalized additive models," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 23(2), pages 129-143, March.
    5. Jiayin Qi & Li Zhang & Yanping Liu & Ling Li & Yongpin Zhou & Yao Shen & Liang Liang & Huaizu Li, 2009. "ADTreesLogit model for customer churn prediction," Annals of Operations Research, Springer, vol. 168(1), pages 247-265, April.
    6. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(1), pages 151-159, February.
    7. Buckinx, Wouter & Van den Poel, Dirk, 2005. "Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting," European Journal of Operational Research, Elsevier, vol. 164(1), pages 252-268, July.
    8. Kim, Hee-Su & Yoon, Choong-Han, 0. "Determinants of subscriber churn and customer loyalty in the Korean mobile telephony market," Telecommunications Policy, Elsevier, vol. 28(9-10), pages 751-765, October.
    9. K. W. De Bock & D. Van Den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/717, Ghent University, Faculty of Economics and Business Administration.
    10. Crone, Sven F. & Lessmann, Stefan & Stahlbock, Robert, 2006. "The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing," European Journal of Operational Research, Elsevier, vol. 173(3), pages 781-800, September.
    11. Van den Poel, Dirk & Lariviere, Bart, 2004. "Customer attrition analysis for financial services using proportional hazard models," European Journal of Operational Research, Elsevier, vol. 157(1), pages 196-217, August.
    12. Lemmens, A. & Croux, C., 2006. "Bagging and boosting classification trees to predict churn," Other publications TiSEM d5cb664d-5859-44db-a621-e, Tilburg University, School of Economics and Management.
    13. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(5), pages 687-698, October.
    14. K. Coussement & D. Van Den Poel, 2007. "Improving Customer Complaint Management by Automatic Email Classification Using Linguistic Style Features as Predictors," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 07/481, Ghent University, Faculty of Economics and Business Administration.
    15. Martens, David & Baesens, Bart & Van Gestel, Tony & Vanthienen, Jan, 2007. "Comprehensible credit scoring models using rule extraction from support vector machines," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1466-1476, December.
    16. J. Burez & D. Van Den Poel, 2008. "Handling class imbalance in customer churn prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 08/517, Ghent University, Faculty of Economics and Business Administration.
    17. K. Coussement & D. Van Den Poel, 2006. "Churn Prediction in Subscription Services: an Application of Support Vector Machines While Comparing Two Parameter-Selection Techniques," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/412, Ghent University, Faculty of Economics and Business Administration.
    18. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(3), pages 381-386, June.
    19. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(4), pages 525-537, August.
    20. ,, 1998. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 14(2), pages 285-292, April.
    21. Glady, Nicolas & Baesens, Bart & Croux, Christophe, 2009. "Modeling churn using customer lifetime value," European Journal of Operational Research, Elsevier, vol. 197(1), pages 402-411, August.
    22. Paleologo, Giuseppe & Elisseeff, André & Antonini, Gianluca, 2010. "Subagging for credit scoring models," European Journal of Operational Research, Elsevier, vol. 201(2), pages 490-499, March.
    23. Setiono, Rudy & Baesens, Bart & Mues, Christophe, 2009. "A note on knowledge discovery using neural networks and its application to credit card screening," European Journal of Operational Research, Elsevier, vol. 192(1), pages 326-332, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
    2. Szeląg, Marcin & Słowiński, Roman, 2024. "Explaining and predicting customer churn by monotonic rules induced from ordinal data," European Journal of Operational Research, Elsevier, vol. 317(2), pages 414-424.
    3. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    4. Tianyuan Zhang & Sérgio Moro & Ricardo F. Ramos, 2022. "A Data-Driven Approach to Improve Customer Churn Prediction Based on Telecom Customer Segmentation," Future Internet, MDPI, vol. 14(3), pages 1-19, March.
    5. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    6. Koen W. de Bock & Arno de Caigny, 2021. "Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling," Post-Print hal-03391564, HAL.
    7. Amin, Adnan & Al-Obeidat, Feras & Shah, Babar & Adnan, Awais & Loo, Jonathan & Anwar, Sajid, 2019. "Customer churn prediction in telecommunication industry using data certainty," Journal of Business Research, Elsevier, vol. 94(C), pages 290-301.
    8. Gattermann-Itschert, Theresa & Thonemann, Ulrich W., 2021. "How training on multiple time slices improves performance in churn prediction," European Journal of Operational Research, Elsevier, vol. 295(2), pages 664-674.
    9. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
    10. Ballings, Michel & Van den Poel, Dirk, 2015. "CRM in social media: Predicting increases in Facebook usage frequency," European Journal of Operational Research, Elsevier, vol. 244(1), pages 248-260.
    11. Amin, Adnan & Shah, Babar & Khattak, Asad Masood & Lopes Moreira, Fernando Joaquim & Ali, Gohar & Rocha, Alvaro & Anwar, Sajid, 2019. "Cross-company customer churn prediction in telecommunication: A comparison of data transformation methods," International Journal of Information Management, Elsevier, vol. 46(C), pages 304-319.
    12. Schaeffer, Satu Elisa & Rodriguez Sanchez, Sara Veronica, 2020. "Forecasting client retention — A machine-learning approach," Journal of Retailing and Consumer Services, Elsevier, vol. 52(C).
    13. Benítez-Peña, Sandra & Blanquero, Rafael & Carrizosa, Emilio & Ramírez-Cobo, Pepa, 2024. "Cost-sensitive probabilistic predictions for support vector machines," European Journal of Operational Research, Elsevier, vol. 314(1), pages 268-279.
    14. Arno de Caigny & Kristof Coussement & Koen de Bock, 2020. "Leveraging fine-grained transaction data for customer life event predictions," Post-Print hal-02507998, HAL.
    15. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    2. Coussement, Kristof & De Bock, Koen W., 2013. "Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning," Journal of Business Research, Elsevier, vol. 66(9), pages 1629-1636.
    3. K. W. De Bock & D. Van Den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/717, Ghent University, Faculty of Economics and Business Administration.
    4. Ballings, Michel & Van den Poel, Dirk, 2015. "CRM in social media: Predicting increases in Facebook usage frequency," European Journal of Operational Research, Elsevier, vol. 244(1), pages 248-260.
    5. Georgios Marinakos & Sophia Daskalaki, 2017. "Imbalanced customer classification for bank direct marketing," Journal of Marketing Analytics, Palgrave Macmillan, vol. 5(1), pages 14-30, March.
    6. Haupt, Johannes & Lessmann, Stefan, 2020. "Targeting Cutsomers Under Response-Dependent Costs," IRTG 1792 Discussion Papers 2020-005, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    7. Bose, Indranil & Chen, Xi, 2009. "Quantitative models for direct marketing: A review from systems perspective," European Journal of Operational Research, Elsevier, vol. 195(1), pages 1-16, May.
    8. Ding‐Wen Tan & William Yeoh & Yee Ling Boo & Soung‐Yue Liew, 2013. "The Impact Of Feature Selection: A Data‐Mining Application In Direct Marketing," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(1), pages 23-38, January.
    9. M. Ballings & D. Van Den Poel & E. Verhagen, 2013. "Evaluating the Added Value of Pictorial Data for Customer Churn Prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/869, Ghent University, Faculty of Economics and Business Administration.
    10. Coussement, Kristof & Benoit, Dries Frederik & Van den Poel, Dirk, 2009. "Improved Marketing Decision Making in a Customer Churn Prediction Context Using Generalized Additive Models," Working Papers 2009/18, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    11. Chen, Zhen-Yu & Fan, Zhi-Ping & Sun, Minghe, 2012. "A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data," European Journal of Operational Research, Elsevier, vol. 223(2), pages 461-472.
    12. Johannes Haupt & Stefan Lessmann, 2020. "Targeting customers under response-dependent costs," Papers 2003.06271, arXiv.org, revised Aug 2021.
    13. Sarkar, Mainak & De Bruyn, Arnaud, 2021. "LSTM Response Models for Direct Marketing Analytics: Replacing Feature Engineering with Deep Learning," Journal of Interactive Marketing, Elsevier, vol. 53(C), pages 80-95.
    14. Talman, A.J.J. & Yang, Z.F., 2012. "On a parameterized system of nonlinear equations with economic applications," Other publications TiSEM 8233343d-0b60-428d-a20b-6, Tilburg University, School of Economics and Management.
    15. Zhiqiang Zheng & Balaji Padmanabhan & Steven O. Kimbrough, 2003. "On the Existence and Significance of Data Preprocessing Biases in Web-Usage Mining," INFORMS Journal on Computing, INFORMS, vol. 15(2), pages 148-170, May.
    16. Herings, P.J.J. & Talman, A.J.J. & Yang, Z.F., 1999. "Variational Inequality Problems With a Continuum of Solutions : Existence and Computation," Discussion Paper 1999-72, Tilburg University, Center for Economic Research.
    17. Carlos R. Handy & Daniel Vrinceanu & Carl B. Marth & Harold A. Brooks, 2015. "Pointwise Reconstruction of Wave Functions from Their Moments through Weighted Polynomial Expansions: An Alternative Global-Local Quantization Procedure," Mathematics, MDPI, vol. 3(4), pages 1-24, November.
    18. Allen C. Goodman & Miron Stano, 2000. "Hmos and Health Externalities: A Local Public Good Perspective," Public Finance Review, , vol. 28(3), pages 247-269, May.
    19. Bode, Sven & Michaelowa, Axel, 2003. "Avoiding perverse effects of baseline and investment additionality determination in the case of renewable energy projects," Energy Policy, Elsevier, vol. 31(6), pages 505-517, May.
    20. Ala, Guido & Fasshauer, Gregory E. & Francomano, Elisa & Ganci, Salvatore & McCourt, Michael J., 2017. "An augmented MFS approach for brain activity reconstruction," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 141(C), pages 3-15.

    More about this item

    Keywords

    Database marketing; customer churn prediction; ensemble classification; generalized additive models (GAMs); GAMens; model interpretability;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rug:rugwps:12/805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nathalie Verhaeghe (email available below). General contact details of provider: https://edirc.repec.org/data/ferugbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.