IDEAS home Printed from https://ideas.repec.org/p/rug/rugwps/08-517.html
   My bibliography  Save this paper

Handling class imbalance in customer churn prediction

Author

Listed:
  • J. BUREZ
  • D. VAN DEN POEL

    ()

Abstract

Customer churn is often a rare event in service industries, but of great interest and great value. Until recently, however, class imbalance has not received much attention in the context of data mining (Weiss, 2004). In this study, we investigate how we can better handle class imbalance in churn prediction. Using more appropriate evaluation metrics (AUC, lift), we investigated the increase in performance of sampling (both random and advanced under-sampling) and two specific modelling techniques (gradient boosting and weighted random forests) compared to some standard modelling techniques. AUC and lift prove to be good evaluation metrics. AUC does not depend on a threshold, and is therefore a better overall evaluation metric compared to accuracy. Lift is very much related to accuracy, but has the advantage of being well used in marketing practice (Ling and Li, 1998). Results show that under-sampling can lead to improved prediction accuracy, especially when evaluated with AUC. Unlike Ling and Li (1998), we find that there is no need to under-sample so that there are as many churners in your training set as non churners. Results show no increase in predictive performance when using the advanced sampling technique CUBE in this study. This is in line with findings of Japkowicz (2000), who noted that using sophisticated sampling techniques did not give any clear advantage. Weighted random forests, as a cost-sensitive learner, performs significantly better compared to random forests, and is therefore advised. It should, however always be compared to logistic regression. Boosting is a very robust classifier, but never outperforms any other technique.

Suggested Citation

  • J. Burez & D. Van Den Poel, 2008. "Handling class imbalance in customer churn prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 08/517, Ghent University, Faculty of Economics and Business Administration.
  • Handle: RePEc:rug:rugwps:08/517
    as

    Download full text from publisher

    File URL: http://wps-feb.ugent.be/Papers/wp_08_517.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. B. Larivière & D. Van Den Poel, 2004. "Predicting Customer Retention and Profitability by Using Random Forests and Regression Forests Techniques," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/282, Ghent University, Faculty of Economics and Business Administration.
    2. B. Larivière & D. Van Den Poel, 2004. "Investigating the role of product features in preventing customer churn, by using survival analysis and choice modeling: The case of financial services," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/223, Ghent University, Faculty of Economics and Business Administration.
    3. Young-Hoon Park & Peter S. Fader, 2004. "Modeling Browsing Behavior at Multiple Websites," Marketing Science, INFORMS, vol. 23(3), pages 280-303, May.
    4. Alan L. Montgomery & Shibo Li & Kannan Srinivasan & John C. Liechty, 2004. "Modeling Online Browsing and Path Analysis Using Clickstream Data," Marketing Science, INFORMS, vol. 23(4), pages 579-595, November.
    5. G. Verstraeten & D. Van Den Poel, 2006. "Using Predicted Outcome Stratified Sampling to Reduce the Variability in Predictive Performance of a One-Shot Train-and-Test Split for Individual Customer Predictions," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/360, Ghent University, Faculty of Economics and Business Administration.
    6. Joffre Swait & Rick L. Andrews, 2003. "Enriching Scanner Panel Models with Choice Experiments," Marketing Science, INFORMS, vol. 22(4), pages 442-460, September.
    7. Baesens, Bart & Viaene, Stijn & Van den Poel, Dirk & Vanthienen, Jan & Dedene, Guido, 2002. "Bayesian neural network learning for repeat purchase modelling in direct marketing," European Journal of Operational Research, Elsevier, vol. 138(1), pages 191-211, April.
    8. A. Prinzie & D. Van Den Poel, 2007. "Random Forrests for Multiclass classification: Random Multinomial Logit," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 07/435, Ghent University, Faculty of Economics and Business Administration.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Coussement, Kristof & Benoit, Dries Frederik & Van den Poel, Dirk, 2009. "Improved Marketing Decision Making in a Customer Churn Prediction Context Using Generalized Additive Models," Working Papers 2009/18, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    2. K. W. De Bock & D. Van Den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/717, Ghent University, Faculty of Economics and Business Administration.
    3. V. L. Miguéis & D. Van Den Poel & A.S. Camanho & J. Falcao E Cunha, 2012. "Modeling Partial Customer Churn: On the Value of First Product-Category Purchase Sequences," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/790, Ghent University, Faculty of Economics and Business Administration.
    4. K. Coussement & D. Van Den Poel, 2008. "Improving Customer Attrition Prediction by Integrating Emotions from Client/Company Interaction Emails and Evaluating Multiple Classifiers," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 08/527, Ghent University, Faculty of Economics and Business Administration.

    More about this item

    Keywords

    rare events; class imbalance; undersampling; oversampling; boosting; random forests; CUBE; customer churn; classifier;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rug:rugwps:08/517. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nathalie Verhaeghe). General contact details of provider: http://edirc.repec.org/data/ferugbe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.