IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v23y2004i4p579-595.html
   My bibliography  Save this article

Modeling Online Browsing and Path Analysis Using Clickstream Data

Author

Listed:
  • Alan L. Montgomery

    () (Tepper School of Business, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213)

  • Shibo Li

    () (Rutgers University, 228 Janice Levin Building, 94 Rockafeller Road, Piscataway, New Jersey 08854)

  • Kannan Srinivasan

    () (Tepper School of Business, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213)

  • John C. Liechty

    () (Pennsylvania State University, 710 M Business Administration Building, University Park, Pennsylvania 16802)

Abstract

Clickstream data provide information about the sequence of pages or the path viewed by users as they navigate a website. We show how path information can be categorized and modeled using a dynamic multinomial probit model of Web browsing. We estimate this model using data from a major online bookseller. Our results show that the memory component of the model is crucial in accurately predicting a path. In comparison, traditional multinomial probit and first-order Markov models predict paths poorly. These results suggest that paths may reflect a user's goals, which could be helpful in predicting future movements at a website. One potential application of our model is to predict purchase conversion. We find that after only six viewings purchasers can be predicted with more than 40% accuracy, which is much better than the benchmark 7% purchase conversion prediction rate made without path information. This technique could be used to personalize Web designs and product offerings based upon a user's path.

Suggested Citation

  • Alan L. Montgomery & Shibo Li & Kannan Srinivasan & John C. Liechty, 2004. "Modeling Online Browsing and Path Analysis Using Clickstream Data," Marketing Science, INFORMS, vol. 23(4), pages 579-595, November.
  • Handle: RePEc:inm:ormksc:v:23:y:2004:i:4:p:579-595
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.1040.0073
    Download Restriction: no

    References listed on IDEAS

    as
    1. McCulloch, Robert E. & Polson, Nicholas G. & Rossi, Peter E., 2000. "A Bayesian analysis of the multinomial probit model with fully identified parameters," Journal of Econometrics, Elsevier, vol. 99(1), pages 173-193, November.
    2. Bettman, James R & Luce, Mary Frances & Payne, John W, 1998. " Constructive Consumer Choice Processes," Journal of Consumer Research, Oxford University Press, vol. 25(3), pages 187-217, December.
    3. Crosby, Lawrence A & Taylor, James R, 1981. " Effects of Consumer Information and Education on Cognition and Choice," Journal of Consumer Research, Oxford University Press, vol. 8(1), pages 43-56, June.
    4. Wendy W. Moe & Peter S. Fader, 2004. "Dynamic Conversion Behavior at E-Commerce Sites," Management Science, INFORMS, vol. 50(3), pages 326-335, March.
    5. Peter E. Rossi & Robert E. McCulloch & Greg M. Allenby, 1996. "The Value of Purchase History Data in Target Marketing," Marketing Science, INFORMS, vol. 15(4), pages 321-340.
    6. Young-Hoon Park & Peter S. Fader, 2004. "Modeling Browsing Behavior at Multiple Websites," Marketing Science, INFORMS, vol. 23(3), pages 280-303, May.
    7. P. B. Seetharaman, 2004. "Modeling Multiple Sources of State Dependence in Random Utility Models: A Distributed Lag Approach," Marketing Science, INFORMS, vol. 23(2), pages 263-271, April.
    8. Janiszewski, Chris, 1998. " The Influence of Display Characteristics on Visual Exploratory Search Behavior," Journal of Consumer Research, Oxford University Press, vol. 25(3), pages 290-301, December.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:23:y:2004:i:4:p:579-595. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.