IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v25y2006i4p322-335.html
   My bibliography  Save this article

Observed and Unobserved Preference Heterogeneity in Brand-Choice Models

Author

Listed:
  • Dan Horsky

    () (William E. Simon Graduate School of Business Administration, University of Rochester, Rochester, New York 14627)

  • Sanjog Misra

    () (William E. Simon Graduate School of Business Administration, University of Rochester, Rochester, New York 14627)

  • Paul Nelson

    () (William E. Simon Graduate School of Business Administration, University of Rochester, Rochester, New York 14627)

Abstract

This paper extends the scanner-based choice literature by explicitly incorporating individual-level brand-preference data. We illustrate our model using a unique data set that combines survey and scanner data collected from the same individuals. The addition of individual-specific brand-preference information significantly improves fit and prediction. Furthermore, this “observed” heterogeneity better explains choice than does “unobserved” heterogeneity in the standard scanner model's parameters. More importantly, we find that the standard model underestimates the importance of consumers' brand preferences and overestimates both brand loyalties and price sensitivities. Brand loyalty is overestimated because models without preference information confound state dependence, heterogeneity, and preference effects. Price sensitivities are inflated because the “average” preference-based consumer is implicitly assumed to be more willing to switch from his preferred brand than is the “real” preference-based consumer. Further, standard models overestimate the heterogeneity in price and loyalty sensitivities and misidentify both price- and loyalty-sensitive consumers. The managerial implications of our findings and the applicability of our methodology when survey data are collected infrequently and for only a subsample of consumers are pursued. We demonstrate that even under these circumstances better populationwide pricing and promotion decisions are identified and more accurate targeting results.

Suggested Citation

  • Dan Horsky & Sanjog Misra & Paul Nelson, 2006. "Observed and Unobserved Preference Heterogeneity in Brand-Choice Models," Marketing Science, INFORMS, vol. 25(4), pages 322-335, 07-08.
  • Handle: RePEc:inm:ormksc:v:25:y:2006:i:4:p:322-335
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.1050.0192
    Download Restriction: no

    References listed on IDEAS

    as
    1. Pradeep K. Chintagunta & Ramarao Desiraju, 2005. "Strategic Pricing and Detailing Behavior in International Markets," Marketing Science, INFORMS, vol. 24(1), pages 67-80, June.
    2. Jie Zhang & Lakshman Krishnamurthi, 2004. "Customizing Promotions in Online Stores," Marketing Science, INFORMS, vol. 23(4), pages 561-578, June.
    3. Keane, Michael P, 1997. "Modeling Heterogeneity and State Dependence in Consumer Choice Behavior," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 310-327, July.
    4. John C. Liechty & Duncan K. H. Fong & Wayne S. DeSarbo, 2005. "Dynamic Models Incorporating Individual Heterogeneity: Utility Evolution in Conjoint Analysis," Marketing Science, INFORMS, vol. 24(2), pages 285-293, November.
    5. Tülin Erdem, 1996. "A Dynamic Analysis of Market Structure Based on Panel Data," Marketing Science, INFORMS, vol. 15(4), pages 359-378.
    6. Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
    7. Peter E. Rossi & Robert E. McCulloch & Greg M. Allenby, 1996. "The Value of Purchase History Data in Target Marketing," Marketing Science, INFORMS, vol. 15(4), pages 321-340.
    8. Tülin Erdem & Michael P. Keane, 1996. "Decision-Making Under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets," Marketing Science, INFORMS, vol. 15(1), pages 1-20.
    9. Füsun Gönül & Kannan Srinivasan, 1993. "Modeling Multiple Sources of Heterogeneity in Multinomial Logit Models: Methodological and Managerial Issues," Marketing Science, INFORMS, vol. 12(3), pages 213-229.
    10. Hausman, Jerry A. & Ruud, Paul A., 1987. "Specifying and testing econometric models for rank-ordered data," Journal of Econometrics, Elsevier, vol. 34(1-2), pages 83-104.
    11. Rosen, Sherwin, 1974. "Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition," Journal of Political Economy, University of Chicago Press, vol. 82(1), pages 34-55, Jan.-Feb..
    12. Kelvin J. Lancaster, 1966. "A New Approach to Consumer Theory," Journal of Political Economy, University of Chicago Press, vol. 74, pages 132-132.
    13. Elrod, Terry & Keane, Michael, 1995. "A Factor-Analytic Probit Model for Representing the Market Structure in Panel Data," MPRA Paper 52434, University Library of Munich, Germany.
    14. Pradeep Chintagunta & Jean-Pierre Dubé & Khim Yong Goh, 2005. "Beyond the Endogeneity Bias: The Effect of Unmeasured Brand Characteristics on Household-Level Brand Choice Models," Management Science, INFORMS, vol. 51(5), pages 832-849, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:ijrema:v:31:y:2014:i:2:p:178-191 is not listed on IDEAS
    2. repec:eee:jouret:v:92:y:2016:i:1:p:65-82 is not listed on IDEAS
    3. Marshall Freimer & Dan Horsky, 2008. "Try It, You Will Like It—Does Consumer Learning Lead to Competitive Price Promotions?," Marketing Science, INFORMS, vol. 27(5), pages 796-810, 09-10.
    4. Greg M. Allenby & Mark J. Garratt & Peter E. Rossi, 2010. "A Model for Trade-Up and Change in Considered Brands," Marketing Science, INFORMS, vol. 29(1), pages 40-56, 01-02.
    5. Jentzsch, Nicola & Sapi, Geza & Suleymanova, Irina, 2013. "Targeted pricing and customer data sharing among rivals," International Journal of Industrial Organization, Elsevier, vol. 31(2), pages 131-144.
    6. Pradeep K. Chintagunta & Harikesh S. Nair, 2011. "Structural Workshop Paper --Discrete-Choice Models of Consumer Demand in Marketing," Marketing Science, INFORMS, vol. 30(6), pages 977-996, November.
    7. Marshall Freimer & Dan Horsky, 2012. "Periodic Advertising Pulsing in a Competitive Market," Marketing Science, INFORMS, vol. 31(4), pages 637-648, July.
    8. Sandeep R. Chandukala & Yancy D. Edwards & Greg M. Allenby, 2011. "Identifying Unmet Demand," Marketing Science, INFORMS, vol. 30(1), pages 61-73, 01-02.
    9. Pengyuan Wang & Eric Bradlow & Edward George, 2014. "Meta-analyses using information reweighting: An application to online advertising," Quantitative Marketing and Economics (QME), Springer, vol. 12(2), pages 209-233, June.
    10. Oded Netzer & Olivier Toubia & Eric Bradlow & Ely Dahan & Theodoros Evgeniou & Fred Feinberg & Eleanor Feit & Sam Hui & Joseph Johnson & John Liechty & James Orlin & Vithala Rao, 2008. "Beyond conjoint analysis: Advances in preference measurement," Marketing Letters, Springer, vol. 19(3), pages 337-354, December.
    11. Dennis Fok & Richard Paap & Philip Hans Franses, 2014. "Incorporating Responsiveness to Marketing Efforts in Brand Choice Modeling," Econometrics, MDPI, Open Access Journal, vol. 2(1), pages 1-25, February.
    12. S. Sriram & Pradeep K. Chintagunta & Manoj K. Agarwal, 2010. "Investigating Consumer Purchase Behavior in Related Technology Product Categories," Marketing Science, INFORMS, vol. 29(2), pages 291-314, 03-04.
    13. Nobuhiko Terui & Masataka Ban & Greg M. Allenby, 2011. "The Effect of Media Advertising on Brand Consideration and Choice," Marketing Science, INFORMS, vol. 30(1), pages 74-91, 01-02.
    14. Jean-Pierre Dubé & Günter J. Hitsch & Peter E. Rossi & Maria Ana Vitorino, 2008. "Category Pricing with State-Dependent Utility," Marketing Science, INFORMS, vol. 27(3), pages 417-429, 05-06.
    15. Karsten Hansen & Vishal Singh, 2009. "Market Structure Across Retail Formats," Marketing Science, INFORMS, vol. 28(4), pages 656-673, 07-08.
    16. Ernan Haruvy & Peter T. L. Popkowski Leszczyc, 2010. "Search and Choice in Online Consumer Auctions," Marketing Science, INFORMS, vol. 29(6), pages 1152-1164, 11-12.
    17. Avi Goldfarb & Qiang Lu & Sridhar Moorthy, 2009. "Measuring Brand Value in an Equilibrium Framework," Marketing Science, INFORMS, vol. 28(1), pages 69-86, 01-02.
    18. repec:eee:ijrema:v:33:y:2016:i:3:p:508-523 is not listed on IDEAS
    19. Ching, Andrew T. & Hayashi, Fumiko, 2010. "Payment card rewards programs and consumer payment choice," Journal of Banking & Finance, Elsevier, vol. 34(8), pages 1773-1787, August.
    20. Neeraj Arora & Ty Henderson & Qing Liu, 2011. "Noncompensatory Dyadic Choices," Marketing Science, INFORMS, vol. 30(6), pages 1028-1047, November.
    21. Martin Natter & Andreas Mild & Udo Wagner & Alfred Taudes, 2008. "—Planning New Tariffs at tele.ring: The Application and Impact of an Integrated Segmentation, Targeting, and Positioning Tool," Marketing Science, INFORMS, vol. 27(4), pages 600-609, 07-08.
    22. Nikolay Archak & Anindya Ghose & Panagiotis G. Ipeirotis, 2011. "Deriving the Pricing Power of Product Features by Mining Consumer Reviews," Management Science, INFORMS, vol. 57(8), pages 1485-1509, August.
    23. Sangwoo Shin & Sanjog Misra & Dan Horsky, 2012. "Disentangling Preferences and Learning in Brand Choice Models," Marketing Science, INFORMS, vol. 31(1), pages 115-137, January.
    24. repec:eee:jbrese:v:85:y:2018:i:c:p:91-104 is not listed on IDEAS
    25. repec:eee:ijrema:v:29:y:2012:i:3:p:256-264 is not listed on IDEAS

    More about this item

    Keywords

    discrete choice; heterogeneity; scanner data;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:25:y:2006:i:4:p:322-335. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.