IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article

Observed and Unobserved Preference Heterogeneity in Brand-Choice Models

  • Dan Horsky

    ()

    (William E. Simon Graduate School of Business Administration, University of Rochester, Rochester, New York 14627)

  • Sanjog Misra

    ()

    (William E. Simon Graduate School of Business Administration, University of Rochester, Rochester, New York 14627)

  • Paul Nelson

    ()

    (William E. Simon Graduate School of Business Administration, University of Rochester, Rochester, New York 14627)

Registered author(s):

    This paper extends the scanner-based choice literature by explicitly incorporating individual-level brand-preference data. We illustrate our model using a unique data set that combines survey and scanner data collected from the same individuals. The addition of individual-specific brand-preference information significantly improves fit and prediction. Furthermore, this “observed” heterogeneity better explains choice than does “unobserved” heterogeneity in the standard scanner model's parameters. More importantly, we find that the standard model underestimates the importance of consumers' brand preferences and overestimates both brand loyalties and price sensitivities. Brand loyalty is overestimated because models without preference information confound state dependence, heterogeneity, and preference effects. Price sensitivities are inflated because the “average” preference-based consumer is implicitly assumed to be more willing to switch from his preferred brand than is the “real” preference-based consumer. Further, standard models overestimate the heterogeneity in price and loyalty sensitivities and misidentify both price- and loyalty-sensitive consumers. The managerial implications of our findings and the applicability of our methodology when survey data are collected infrequently and for only a subsample of consumers are pursued. We demonstrate that even under these circumstances better populationwide pricing and promotion decisions are identified and more accurate targeting results.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://dx.doi.org/10.1287/mksc.1050.0192
    Download Restriction: no

    Article provided by INFORMS in its journal Marketing Science.

    Volume (Year): 25 (2006)
    Issue (Month): 4 (07-08)
    Pages: 322-335

    as
    in new window

    Handle: RePEc:inm:ormksc:v:25:y:2006:i:4:p:322-335
    Contact details of provider: Postal:
    7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA

    Phone: +1-443-757-3500
    Fax: 443-757-3515
    Web page: http://www.informs.org/
    Email:


    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
    2. Tülin Erdem, 1996. "A Dynamic Analysis of Market Structure Based on Panel Data," Marketing Science, INFORMS, vol. 15(4), pages 359-378.
    3. Rosen, Sherwin, 1974. "Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition," Journal of Political Economy, University of Chicago Press, vol. 82(1), pages 34-55, Jan.-Feb..
    4. Peter E. Rossi & Robert E. McCulloch & Greg M. Allenby, 1996. "The Value of Purchase History Data in Target Marketing," Marketing Science, INFORMS, vol. 15(4), pages 321-340.
    5. Pradeep Chintagunta & Jean-Pierre Dubé & Khim Yong Goh, 2005. "Beyond the Endogeneity Bias: The Effect of Unmeasured Brand Characteristics on Household-Level Brand Choice Models," Management Science, INFORMS, vol. 51(5), pages 832-849, May.
    6. Kelvin J. Lancaster, 1966. "A New Approach to Consumer Theory," Journal of Political Economy, University of Chicago Press, vol. 74, pages 132.
    7. Füsun Gönül & Kannan Srinivasan, 1993. "Modeling Multiple Sources of Heterogeneity in Multinomial Logit Models: Methodological and Managerial Issues," Marketing Science, INFORMS, vol. 12(3), pages 213-229.
    8. John C. Liechty & Duncan K. H. Fong & Wayne S. DeSarbo, 2005. "Dynamic Models Incorporating Individual Heterogeneity: Utility Evolution in Conjoint Analysis," Marketing Science, INFORMS, vol. 24(2), pages 285-293, November.
    9. Elrod, Terry & Keane, Michael, 1995. "A Factor-Analytic Probit Model for Representing the Market Structure in Panel Data," MPRA Paper 52434, University Library of Munich, Germany.
    10. Jie Zhang & Lakshman Krishnamurthi, 2004. "Customizing Promotions in Online Stores," Marketing Science, INFORMS, vol. 23(4), pages 561-578, June.
    11. Tülin Erdem & Michael P. Keane, 1996. "Decision-Making Under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets," Marketing Science, INFORMS, vol. 15(1), pages 1-20.
    12. Hausman, Jerry A. & Ruud, Paul A., 1987. "Specifying and testing econometric models for rank-ordered data," Journal of Econometrics, Elsevier, vol. 34(1-2), pages 83-104.
    13. Pradeep K. Chintagunta & Ramarao Desiraju, 2005. "Strategic Pricing and Detailing Behavior in International Markets," Marketing Science, INFORMS, vol. 24(1), pages 67-80, June.
    14. Keane, Michael P, 1997. "Modeling Heterogeneity and State Dependence in Consumer Choice Behavior," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 310-27, July.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:25:y:2006:i:4:p:322-335. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.