IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article

Multiple Discreteness and Product Differentiation: Demand for Carbonated Soft Drinks

  • Jean-Pierre Dubé

    ()

    (Graduate School of Business, University of Chicago, 1101 East 58th Street, Chicago, Illinois 60637)

Registered author(s):

    For several of the largest supermarket product categories, such as carbonated soft drinks, canned soups, ready-to-eat cereals, and cookies, consumers regularly purchase assortments of products. Within the category, consumers often purchase multiple products and multiple units of each alternative selected on a given trip. This multiple discreteness violates the single-unit purchase assumption of multinomial logit and probit models. The misspecification of such demand models in categories exhibiting multiple discreteness would produce incorrect measures of consumer response to marketing mix variables. In studying product strategy, these models would lead to misleading managerial conclusions. We use an alternative microeconomic model of demand for categories that exhibit the multiple discreteness problem. Recognizing the separation between the time of purchase and the time of consumption, we model consumers purchasing bundles of goods in anticipation of a stream of consumption occasions before the next trip. We apply the model to a panel of household purchases for carbonated soft drinks.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://dx.doi.org/10.1287/mksc.1030.0041
    Download Restriction: no

    Article provided by INFORMS in its journal Marketing Science.

    Volume (Year): 23 (2004)
    Issue (Month): 1 (September)
    Pages: 66-81

    as
    in new window

    Handle: RePEc:inm:ormksc:v:23:y:2004:i:1:p:66-81
    Contact details of provider: Postal:
    7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA

    Phone: +1-443-757-3500
    Fax: 443-757-3515
    Web page: http://www.informs.org/
    Email:


    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Steven T. Berry, 1994. "Estimating Discrete-Choice Models of Product Differentiation," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 242-262, Summer.
    2. Daniel McFadden, 1987. "A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration," Working papers 464, Massachusetts Institute of Technology (MIT), Department of Economics.
    3. Keane, Michael P, 1997. "Modeling Heterogeneity and State Dependence in Consumer Choice Behavior," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 310-27, July.
    4. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
    5. Puneet Manchanda & Asim Ansari & Sunil Gupta, 1999. "The “Shopping Basket”: A Model for Multicategory Purchase Incidence Decisions," Marketing Science, INFORMS, vol. 18(2), pages 95-114.
    6. Tülin Erdem & Michael P. Keane, 1996. "Decision-Making Under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets," Marketing Science, INFORMS, vol. 15(1), pages 1-20.
    7. Conley, T. G., 1999. "GMM estimation with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 92(1), pages 1-45, September.
    8. Russell S. Winer, 1985. "Technical Note—A Price Vector Model of Demand for Consumer Durables: Preliminary Developments," Marketing Science, INFORMS, vol. 4(1), pages 74-90.
    9. Hauser, John R & Wernerfelt, Birger, 1990. " An Evaluation Cost Model of Consideration Sets," Journal of Consumer Research, Oxford University Press, vol. 16(4), pages 393-408, March.
    10. Gurumurthy Kalyanaram & Russell S. Winer, 1995. "Empirical Generalizations from Reference Price Research," Marketing Science, INFORMS, vol. 14(3_supplem), pages G161-G169.
    11. Chintagunta, Pradeep & Kyriazidou, Ekaterini & Perktold, Josef, 2001. "Panel data analysis of household brand choices," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 111-153, July.
    12. Alan L. Montgomery, 1997. "Creating Micro-Marketing Pricing Strategies Using Supermarket Scanner Data," Marketing Science, INFORMS, vol. 16(4), pages 315-337.
    13. Igal Hendel, 1999. "Estimating Multiple-Discrete Choice Models: An Application to Computerization Returns," Review of Economic Studies, Oxford University Press, vol. 66(2), pages 423-446.
    14. McAlister, Leigh, 1982. " A Dynamic Attribute Satiation Model of Variety-Seeking Behavior," Journal of Consumer Research, Oxford University Press, vol. 9(2), pages 141-50, September.
    15. Pradeep K. Chintagunta, 1993. "Investigating Purchase Incidence, Brand Choice and Purchase Quantity Decisions of Households," Marketing Science, INFORMS, vol. 12(2), pages 184-208.
    16. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-57, September.
    17. Lakshman Krishnamurthi & S. P. Raj, 1988. "A Model of Brand Choice and Purchase Quantity Price Sensitivities," Marketing Science, INFORMS, vol. 7(1), pages 1-20.
    18. Tülin Erdem, 1996. "A Dynamic Analysis of Market Structure Based on Panel Data," Marketing Science, INFORMS, vol. 15(4), pages 359-378.
    19. Füsun Gönül & Kannan Srinivasan, 1996. "Estimating the Impact of Consumer Expectations of Coupons on Purchase Behavior: A Dynamic Structural Model," Marketing Science, INFORMS, vol. 15(3), pages 262-279.
    20. John W. Walsh, 1995. "Flexibility in Consumer Purchasing for Uncertain Future Tastes," Marketing Science, INFORMS, vol. 14(2), pages 148-165.
    21. Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
    22. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    23. Kirthi Kalyanam & Daniel S. Putler, 1997. "Incorporating Demographic Variables in Brand Choice Models: An Indivisible Alternatives Framework," Marketing Science, INFORMS, vol. 16(2), pages 166-181.
    24. William R. Dillon & Sunil Gupta, 1996. "A Segment-Level Model of Category Volume and Brand Choice," Marketing Science, INFORMS, vol. 15(1), pages 38-59.
    25. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-54, July.
    26. Smith, Richard J, 1992. "Non-nested.Tests for Competing Models Estimated by Generalized Method of Moments," Econometrica, Econometric Society, vol. 60(4), pages 973-80, July.
    27. Jeongwen Chiang, 1991. "A Simultaneous Approach to the Whether, What and How Much to Buy Questions," Marketing Science, INFORMS, vol. 10(4), pages 297-315.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:23:y:2004:i:1:p:66-81. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.