IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Accounting for Primary and Secondary Demand Effects with Aggregate Data

  • Nair, Harikesh S.

    (Stanford U)

  • Dube, Jean-Pierre

    (U of Chicago)

  • Chintagunta, Pradeep

Discrete choice models of aggregate demand, such as the random coefficients logit, can handle large differentiated products categories parsimoniously while still providing flexible substitution patterns. However, the discrete choice assumption may not be appropriate for many categories in which we expect consumers may purchase more than one unit of the selected item. We derive the aggregate demand system corresponding to a discrete/continuous household-level model of demand. We also propose a Method-of-Simulated-Moments procedure that provides consistent estimates of the structural parameters when only aggregate data are available. The procedure also enables the researcher to control both for the potential endogeneity of marketing variables as well as potential heterogeneity in consumer tastes. Using our aggregate estimates, we can measure the decomposition of price elasticities into incidence, brand choice and purchase quantity components. We also propose several empirical tests to assess the validity of the discrete/continuous demand system versus the logit model. In several simulation experiments, we demonstrate the robustness of this model across datasets in which quantity choices may or may not be important. Our empirical calibration to store-level data in the refrigerated orange juice category indicates a considerable improvement in fit of the observed aggregate sales using the discrete/continuous model.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://gsbapps.stanford.edu/researchpapers/library/RP1949.pdf
Download Restriction: no

Paper provided by Stanford University, Graduate School of Business in its series Research Papers with number 1949.

as
in new window

Length:
Date of creation: Jul 2004
Date of revision:
Handle: RePEc:ecl:stabus:1949
Contact details of provider: Postal: Stanford University, Stanford, CA 94305-5015
Phone: (650) 723-2146
Fax: (650)725-6750
Web page: http://gsbapps.stanford.edu/researchpapers/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Tülin Erdem & Susumu Imai & Michael Keane, 2003. "Brand and Quantity Choice Dynamics Under Price Uncertainty," Quantitative Marketing and Economics, Springer, vol. 1(1), pages 5-64, March.
  2. Neeraj Arora & Greg M. Allenby & James L. Ginter, 1998. "A Hierarchical Bayes Model of Primary and Secondary Demand," Marketing Science, INFORMS, vol. 17(1), pages 29-44.
  3. Jean-Pierre Dubé, 2004. "Multiple Discreteness and Product Differentiation: Demand for Carbonated Soft Drinks," Marketing Science, INFORMS, vol. 23(1), pages 66-81, September.
  4. Pradeep K. Chintagunta, 1993. "Investigating Purchase Incidence, Brand Choice and Purchase Quantity Decisions of Households," Marketing Science, INFORMS, vol. 12(2), pages 184-208.
  5. Hanemann, W Michael, 1984. "Discrete-Continuous Models of Consumer Demand," Econometrica, Econometric Society, vol. 52(3), pages 541-61, May.
  6. Greg M. Allenby & Thomas S. Shively & Sha Yang & Mark J. Garratt, 2004. "A Choice Model for Packaged Goods: Dealing with Discrete Quantities and Quantity Discounts," Marketing Science, INFORMS, vol. 23(1), pages 95-108, June.
  7. Jeongwen Chiang, 1991. "A Simultaneous Approach to the Whether, What and How Much to Buy Questions," Marketing Science, INFORMS, vol. 10(4), pages 297-315.
  8. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-57, September.
  9. David Besanko & Sachin Gupta & Dipak Jain, 1998. "Logit Demand Estimation Under Competitive Pricing Behavior: An Equilibrium Framework," Management Science, INFORMS, vol. 44(11-Part-1), pages 1533-1547, November.
  10. Steven T. Berry, 1994. "Estimating Discrete-Choice Models of Product Differentiation," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 242-262, Summer.
  11. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-90, July.
  12. William R. Dillon & Sunil Gupta, 1996. "A Segment-Level Model of Category Volume and Brand Choice," Marketing Science, INFORMS, vol. 15(1), pages 38-59.
  13. Bhat, Chandra R., 2001. "Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 677-693, August.
  14. Lakshman Krishnamurthi & S. P. Raj, 1988. "A Model of Brand Choice and Purchase Quantity Price Sensitivities," Marketing Science, INFORMS, vol. 7(1), pages 1-20.
  15. Greg M. Allenby & Peter E. Rossi, 1991. "Quality Perceptions and Asymmetric Switching Between Brands," Marketing Science, INFORMS, vol. 10(3), pages 185-204.
  16. Conley, T. G., 1999. "GMM estimation with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 92(1), pages 1-45, September.
  17. David R. Bell & Jeongwen Chiang & V. Padmanabhan, 1999. "The Decomposition of Promotional Response: An Empirical Generalization," Marketing Science, INFORMS, vol. 18(4), pages 504-526.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ecl:stabus:1949. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.