IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Investigating the Competitive Assumption of Multinomial Logit Models of Brand Choice by Nonparametric Modeling

  • Makoto Abe

    (Faculty of Economics, University of Tokyo)

  • Yasemin Boztug

    (Institute of Marketing, Humboldt University of Berlin)

  • Lutz Hildebrandt

    (Institute of Marketing, Humboldt University of Berlin)

The Multinomial Logit (MNL) model is still the only viable option to study nonlinear responsiveness of utility to covariates nonparametrically. This research investigates whether MNL structure of inter-brand competition is a reasonable assumption, so that when the utility function is estimated nonparametrically, the IIA assumption does not bias the result. For this purpose, the authors compare the performance of two comparable nonpara-metric choice models that differ in one aspect: one assumes MNL com-petitive structure and the other infers the pattern of brands' competition nonparametrically from data.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2003/2003cf193.pdf
Download Restriction: no

Paper provided by CIRJE, Faculty of Economics, University of Tokyo in its series CIRJE F-Series with number CIRJE-F-193.

as
in new window

Length: 21 pages
Date of creation: Feb 2003
Date of revision:
Handle: RePEc:tky:fseres:2003cf193
Contact details of provider: Postal: Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033
Phone: +81-3-5841-5644
Fax: +81-3-5841-8294
Web page: http://www.cirje.e.u-tokyo.ac.jp/index.html
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Füsun Gönül & Kannan Srinivasan, 1993. "Modeling Multiple Sources of Heterogeneity in Multinomial Logit Models: Methodological and Managerial Issues," Marketing Science, INFORMS, vol. 12(3), pages 213-229.
  2. Daniel McFadden, 1987. "A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration," Working papers 464, Massachusetts Institute of Technology (MIT), Department of Economics.
  3. Peter E. Rossi & Robert E. McCulloch & Greg M. Allenby, 1996. "The Value of Purchase History Data in Target Marketing," Marketing Science, INFORMS, vol. 15(4), pages 321-340.
  4. Patricia M. West & Patrick L. Brockett & Linda L. Golden, 1997. "A Comparative Analysis of Neural Networks and Statistical Methods for Predicting Consumer Choice," Marketing Science, INFORMS, vol. 16(4), pages 370-391.
  5. Makoto Abe, 1995. "A Nonparametric Density Estimation Method for Brand Choice Using Scanner Data," Marketing Science, INFORMS, vol. 14(3), pages 300-325.
  6. Abe, Makoto, 1999. "A Generalized Additive Model for Discrete-Choice Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(3), pages 271-84, July.
  7. Briesch R.A. & Chintagunta P.K. & Matzkin R.L., 2002. "Semiparametric Estimation of Brand Choice Behavior," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 973-982, December.
  8. Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
  9. Hausman, Jerry & McFadden, Daniel, 1984. "Specification Tests for the Multinomial Logit Model," Econometrica, Econometric Society, vol. 52(5), pages 1219-40, September.
  10. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2003cf193. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CIRJE administrative office)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.