IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb373/199688.html
   My bibliography  Save this paper

An Optimization Interpretation of Integration and Backfitting Estimators for Separable Nonparametric Models

Author

Listed:
  • Nielsen, J. P.
  • Linton, O. B.

Abstract

We provide an optimization interpretation of both back‐fitting and integration estimators for additive nonparametric regression. We find that the integration estimator is a projection with respect to a product measure. We also provide further understanding of the back‐fitting method.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Nielsen, J. P. & Linton, O. B., 1996. "An Optimization Interpretation of Integration and Backfitting Estimators for Separable Nonparametric Models," SFB 373 Discussion Papers 1996,88, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  • Handle: RePEc:zbw:sfb373:199688
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linton, Oliver & Mammen, Enno & Nielsen, Jans Perch & Tanggaard, Carsten, 2001. "Yield curve estimation by kernel smoothing methods," Journal of Econometrics, Elsevier, vol. 105(1), pages 185-223, November.
    2. Graciela Boente & Alejandra Martínez, 2017. "Marginal integration M-estimators for additive models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 231-260, June.
    3. Patrick Saart & Jiti Gao & Nam Hyun Kim, 2014. "Semiparametric methods in nonlinear time series analysis: a selective review," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 141-169, March.
    4. Abe, Makoto & Boztuæg, Yasemin & Hildebrandt, Lutz, 2000. "Investigation of the stochastic utility maximization process of consumer brand choice by semiparametric modeling," SFB 373 Discussion Papers 2000,84, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    5. Nathalie Chèze & Jean-Michel Poggi & Bruno Portier, 2003. "Partial and Recombined Estimators for Nonlinear Additive Models," Statistical Inference for Stochastic Processes, Springer, vol. 6(2), pages 155-197, May.
    6. Degui Li & Oliver Linton & Zudi Lu, 2012. "A Flexible Semiparametric Model for Time Series," Monash Econometrics and Business Statistics Working Papers 17/12, Monash University, Department of Econometrics and Business Statistics.
    7. Makoto Abe & Yasemin Boztug & Lutz Hildebrandt, 2004. "Investigating the competitive assumption of Multinomial Logit models of brand choice by nonparametric modeling," Computational Statistics, Springer, vol. 19(4), pages 635-657, December.
    8. Linton, Oliver & Mammen, Enno & Nielsen, Jens Perch & Tanggaard, Carsten, 1998. "Estimating yield curves by Kernel smoothing methods," SFB 373 Discussion Papers 1999,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    9. Fei Liu & Jiti Gao & Yanrong Yang, 2020. "Time-Varying Panel Data Models with an Additive Factor Structure," Monash Econometrics and Business Statistics Working Papers 42/20, Monash University, Department of Econometrics and Business Statistics.
    10. Lawrence Dacuycuy, 2006. "Explaining male wage inequality in the Philippines: non-parametric and semiparametric approaches," Applied Economics, Taylor & Francis Journals, vol. 38(21), pages 2497-2511.
    11. Li, Degui & Linton, Oliver & Lu, Zudi, 2015. "A flexible semiparametric forecasting model for time series," Journal of Econometrics, Elsevier, vol. 187(1), pages 345-357.
    12. Li, Qi & Hsiao, Cheng & Zinn, Joel, 2003. "Consistent specification tests for semiparametric/nonparametric models based on series estimation methods," Journal of Econometrics, Elsevier, vol. 112(2), pages 295-325, February.
    13. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    14. Mammen, Enno & Martínez Miranda, María Dolores & Nielsen, Jens Perch, 2015. "In-sample forecasting applied to reserving and mesothelioma mortality," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 76-86.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb373:199688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.