IDEAS home Printed from
   My bibliography  Save this paper

A flexible semiparametric model for time series


  • Degui Li

    (Institute for Fiscal Studies)

  • Oliver Linton

    () (Institute for Fiscal Studies and University of Cambridge)

  • Zudi Lu

    (Institute for Fiscal Studies)


We consider approximating a multivariate regression function by an affine combination of one-dimensional conditional component regression functions. The weight parameters involved in the approximation are estimated by least squares on the first-stage nonparametric kernel estimates. We establish asymptotic normality for the estimated weights and the regression function in two cases: the number of the covariates is finite, and the number of the covariates is diverging. As the observations are assumed to be stationary and near epoch dependent, the approach in this paper is applicable to estimation and forecasting issues in time series analysis. Furthermore, the methods and results are augmented by a simulation study and illustrated by application in the analysis of the Australian annual mean temperature anomaly series. We also apply our methods to high frequency volatility forecasting, where we obtain superior results to parametric methods.

Suggested Citation

  • Degui Li & Oliver Linton & Zudi Lu, 2012. "A flexible semiparametric model for time series," CeMMAP working papers CWP28/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:28/12

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Linton, Oliver B., 2000. "Efficient Estimation Of Generalized Additive Nonparametric Regression Models," Econometric Theory, Cambridge University Press, vol. 16(04), pages 502-523, August.
    2. Linton, Oliver B. & Mammen, Enno, 2008. "Nonparametric transformation to white noise," Journal of Econometrics, Elsevier, vol. 142(1), pages 241-264, January.
    3. Oliver Linton & E. Mammen & J. Nielsen, 1997. "The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions," Cowles Foundation Discussion Papers 1160, Cowles Foundation for Research in Economics, Yale University.
    4. Andrews, Donald W.K., 1995. "Nonparametric Kernel Estimation for Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 11(03), pages 560-586, June.
    5. Terasvirta, Timo & Tjostheim, Dag & Granger, Clive W. J., 2010. "Modelling Nonlinear Economic Time Series," OUP Catalogue, Oxford University Press, number 9780199587155, June.
    6. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    7. Zudi Lu, 2001. "Asymptotic Normality of Kernel Density Estimators under Dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(3), pages 447-468, September.
    8. Liang, Hua & Zou, Guohua & Wan, Alan T. K. & Zhang, Xinyu, 2011. "Optimal Weight Choice for Frequentist Model Average Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1053-1066.
    9. Yongmiao Hong, 2000. "Generalized spectral tests for serial dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 557-574.
    10. Linton, Oliver & Sancetta, Alessio, 2009. "Consistent estimation of a general nonparametric regression function in time series," Journal of Econometrics, Elsevier, vol. 152(1), pages 70-78, September.
    11. Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Francisco Azuero & Jorge Armando Rodríguez, 2016. "Preservación ambiental de la Amazonia colombiana: retos para la política fiscal," REVISTA CUADERNOS DE ECONOMÍA, UN - RCE - CID, vol. 35(Especial ), pages 281-313, January.

    More about this item


    Asymptotic normality; model averaging; Nadaraya-Watson kernel estimation; near epoch dependence; semiparametric method.;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:28/12. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Emma Hyman). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.