IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v26y2007i2p113-127.html
   My bibliography  Save this article

Using a heterogeneous multinomial probit model with a neural net extension to model brand choice

Author

Listed:
  • Harald Hruschka

    (Department of Marketing, Faculty of Economics, University of Regensburg, Germany)

Abstract

The multinomial probit model introduced here combines heterogeneity across households with flexibility of the (deterministic) utility function. To achieve flexibility deterministic utility is approximated by a neural net of the multilayer perceptron type. A Markov Chain Monte Carlo method serves to estimate heterogeneous multinomial probit models which fulfill economic restrictions on signs of (marginal) effects of predictors (e.g., negative for price). For empirical choice data the heterogeneous multinomial probit model extended by a multilayer perceptron clearly outperforms all the other models studied. Moreover, replacing homogeneous by heterogeneous reference price mechanisms and thus allowing price expectations to be formed differently across households also leads to better model performance. Mean utility differences and mean elasticities w.r.t. price and price deviation from reference price demonstrate that models with linear utility and nonlinear utility approximated by a multilayer perceptron lead to very different implications for managerial decision making. Copyright © 2007 John Wiley & Sons, Ltd.

Suggested Citation

  • Harald Hruschka, 2007. "Using a heterogeneous multinomial probit model with a neural net extension to model brand choice," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(2), pages 113-127.
  • Handle: RePEc:jof:jforec:v:26:y:2007:i:2:p:113-127
    DOI: 10.1002/for.1013
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/for.1013
    File Function: Link to full text; subscription required
    Download Restriction: no

    References listed on IDEAS

    as
    1. Hausman, Jerry A & Wise, David A, 1978. "A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences," Econometrica, Econometric Society, vol. 46(2), pages 403-426, March.
    2. Mayhew, Glenn E & Winer, Russell S, 1992. " An Empirical Analysis of Internal and External Reference Prices Using Scanner Data," Journal of Consumer Research, Oxford University Press, vol. 19(1), pages 62-70, June.
    3. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, March.
    4. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-291, March.
    5. Thomas S. Shively & Greg M. Allenby & Robert Kohn, 2000. "A Nonparametric Approach to Identifying Latent Relationships in Hierarchical Models," Marketing Science, INFORMS, vol. 19(2), pages 149-162, November.
    6. Kwangpil Chang & S. Siddarth & Charles B. Weinberg, 1999. "The Impact of Heterogeneity in Purchase Timing and Price Responsiveness on Estimates of Sticker Shock Effects," Marketing Science, INFORMS, vol. 18(2), pages 178-192.
    7. Hruschka, Harald & Fettes, Werner & Probst, Markus, 2004. "An empirical comparison of the validity of a neural net based multinomial logit choice model to alternative model specifications," European Journal of Operational Research, Elsevier, vol. 159(1), pages 166-180, November.
    8. Abe, Makoto, 1999. "A Generalized Additive Model for Discrete-Choice Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(3), pages 271-284, July.
    9. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
    10. Imai, Kosuke & van Dyk, David A., 2005. "A Bayesian analysis of the multinomial probit model using marginal data augmentation," Journal of Econometrics, Elsevier, vol. 124(2), pages 311-334, February.
    11. Briesch R.A. & Chintagunta P.K. & Matzkin R.L., 2002. "Semiparametric Estimation of Brand Choice Behavior," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 973-982, December.
    12. David R. Bell & James M. Lattin, 2000. "Looking for Loss Aversion in Scanner Panel Data: The Confounding Effect of Price Response Heterogeneity," Marketing Science, INFORMS, vol. 19(2), pages 185-200, May.
    13. Winer, Russell S, 1986. " A Reference Price Model of Brand Choice for Frequently Purchased Products," Journal of Consumer Research, Oxford University Press, vol. 13(2), pages 250-256, September.
    14. Kalyanaram, Gurumurthy & Little, John D C, 1994. " An Empirical Analysis of Latitude of Price Acceptance in Consumer Package Goods," Journal of Consumer Research, Oxford University Press, vol. 21(3), pages 408-418, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:26:y:2007:i:2:p:113-127. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.