Improved marketing decision making in a customer churn prediction context using generalized additive models
Author
Abstract
(This abstract was borrowed from another version of this item.)
Suggested Citation
DOI: 10.1016/j.eswa.2009.07.02
Download full text from publisher
To our knowledge, this item is not available for download. To find whether it is available, there are three options:1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a for a similarly titled item that would be available.
Other versions of this item:
- K. Coussement & D. F. Benoit & D. Van Den Poel, 2009. "Improved Marketing Decision Making in a Customer Churn Prediction Context Using Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/603, Ghent University, Faculty of Economics and Business Administration.
- Coussement, Kristof & Benoit, Dries Frederik & Van den Poel, Dirk, 2009. "Improved Marketing Decision Making in a Customer Churn Prediction Context Using Generalized Additive Models," Working Papers 2009/18, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- K. W. De Bock & D. Van Den Poel, 2012. "Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/805, Ghent University, Faculty of Economics and Business Administration.
- M. Ballings & D. Van Den Poel & E. Verhagen, 2013. "Evaluating the Added Value of Pictorial Data for Customer Churn Prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/869, Ghent University, Faculty of Economics and Business Administration.
- Matthias Bogaert & Michel Ballings & Martijn Hosten & Dirk Van den Poel, 2017. "Identifying Soccer Players on Facebook Through Predictive Analytics," Decision Analysis, INFORMS, vol. 14(4), pages 274-297, December.
- P. Baecke & D. Van Den Poel, 2012. "Including Spatial Interdependence in Customer Acquisition Models: a Cross-Category Comparison," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/788, Ghent University, Faculty of Economics and Business Administration.
- D. F. Benoit & D. Van Den Poel, 2012. "Improving Customer Retention In Financial Services Using Kinship Network Information," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/786, Ghent University, Faculty of Economics and Business Administration.
- Koen W. de Bock & Arno de Caigny, 2021. "Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling," Post-Print hal-03391564, HAL.
- Louis Geiler & Séverine Affeldt & Mohamed Nadif, 2022. "A survey on machine learning methods for churn prediction," Post-Print hal-03824873, HAL.
- Ballings, Michel & Van den Poel, Dirk, 2015. "CRM in social media: Predicting increases in Facebook usage frequency," European Journal of Operational Research, Elsevier, vol. 244(1), pages 248-260.
- Gaurav Gupta & Himanshu Aggarwal, 2016. "Analysing customer responses to migrate strategies in making retailing and CRM effective," International Journal of Indian Culture and Business Management, Inderscience Enterprises Ltd, vol. 12(1), pages 92-127.
- Kraus, Mathias & Tschernutter, Daniel & Weinzierl, Sven & Zschech, Patrick, 2024. "Interpretable generalized additive neural networks," European Journal of Operational Research, Elsevier, vol. 317(2), pages 303-316.
- Seema & Gaurav Gupta, 2024. "Development of fading channel patch based convolutional neural network models for customer churn prediction," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(1), pages 391-411, January.
- Rivalani Hlongwane & Kutlwano K K M Ramaboa & Wilson Mongwe, 2024. "Enhancing credit scoring accuracy with a comprehensive evaluation of alternative data," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-18, May.
- M. Ballings & D. Van Den Poel, 2012. "The Relevant Length of Customer Event History for Churn Prediction: How long is long enough?," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/804, Ghent University, Faculty of Economics and Business Administration.
- Seungwook Kim & Daeyoung Choi & Eunjung Lee & Wonjong Rhee, 2017. "Churn prediction of mobile and online casual games using play log data," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-19, July.
- Schaeffer, Satu Elisa & Rodriguez Sanchez, Sara Veronica, 2020. "Forecasting client retention — A machine-learning approach," Journal of Retailing and Consumer Services, Elsevier, vol. 52(C).
- Coussement, Kristof & De Bock, Koen W., 2013.
"Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning,"
Journal of Business Research, Elsevier, vol. 66(9), pages 1629-1636.
- K. Coussement & K.W. de Bock, 2013. "Customer Churn Prediction in the Online Gambling Industry: The Beneficial Effect of Ensemble Learning," Post-Print hal-00788063, HAL.
- K.W. de Bock & D. van den Poel, 2011.
"An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction,"
Post-Print
hal-00800160, HAL.
- K. W. De Bock & D. Van Den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/717, Ghent University, Faculty of Economics and Business Administration.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00581701. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/hal/journl/halshs-00581701.html