IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03824873.html
   My bibliography  Save this paper

A survey on machine learning methods for churn prediction

Author

Listed:
  • Louis Geiler

    (CB - CB - Centre Borelli - UMR 9010 - Service de Santé des Armées - INSERM - Institut National de la Santé et de la Recherche Médicale - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique - ENS Paris Saclay - Ecole Normale Supérieure Paris-Saclay - UPCité - Université Paris Cité)

  • Séverine Affeldt

    (CB - CB - Centre Borelli - UMR 9010 - Service de Santé des Armées - INSERM - Institut National de la Santé et de la Recherche Médicale - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique - ENS Paris Saclay - Ecole Normale Supérieure Paris-Saclay - UPCité - Université Paris Cité)

  • Mohamed Nadif

    (CB - CB - Centre Borelli - UMR 9010 - Service de Santé des Armées - INSERM - Institut National de la Santé et de la Recherche Médicale - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique - ENS Paris Saclay - Ecole Normale Supérieure Paris-Saclay - UPCité - Université Paris Cité)

Abstract

The diversity and specificities of today's businesses have leveraged a wide range of prediction techniques. In particular, churn prediction is a major economic concern for many companies. The purpose of this study is to draw general guidelines from a benchmark of supervised machine learning techniques in association with widely used data sampling approaches on publicly available datasets in the context of churn prediction. Choosing a priori the most appropriate sampling method as well as the most suitable classification model is not trivial, as it strongly depends on the data intrinsic characteristics. In this paper we study the behavior of eleven supervised and semi-supervised learning methods and seven sampling approaches on sixteen diverse and publicly available churn-like datasets. Our evaluations, reported in terms of the Area Under the Curve (AUC) metric, explore the influence of sampling approaches and data characteristics on the performance of the studied learning methods. Besides, we propose Nemenyi test and Correspondence Analysis as means of comparison and visualization of the association between classification algorithms, sampling methods and datasets. Most importantly, our experiments lead to a practical recommendation for a prediction pipeline based on an ensemble approach. Our proposal can be successfully applied to a wide range of churn-like datasets.

Suggested Citation

  • Louis Geiler & Séverine Affeldt & Mohamed Nadif, 2022. "A survey on machine learning methods for churn prediction," Post-Print hal-03824873, HAL.
  • Handle: RePEc:hal:journl:hal-03824873
    DOI: 10.1007/s41060-022-00312-5
    Note: View the original document on HAL open archive server: https://hal.science/hal-03824873
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03824873/document
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s41060-022-00312-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Coussement, Kristof & Benoit, Dries Frederik & Van den Poel, Dirk, 2009. "Improved Marketing Decision Making in a Customer Churn Prediction Context Using Generalized Additive Models," Working Papers 2009/18, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    2. Eugene W. Anderson & Mary W. Sullivan, 1993. "The Antecedents and Consequences of Customer Satisfaction for Firms," Marketing Science, INFORMS, vol. 12(2), pages 125-143.
    3. Coussement, Kristof & De Bock, Koen W., 2013. "Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning," Journal of Business Research, Elsevier, vol. 66(9), pages 1629-1636.
    4. D. F. Benoit & D. Van Den Poel, 2012. "Improving Customer Retention In Financial Services Using Kinship Network Information," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/786, Ghent University, Faculty of Economics and Business Administration.
    5. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
    6. Arno de Caigny & Kristof Coussement & Koen W. de Bock, 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," Post-Print hal-01741661, HAL.
    7. Ruth N. Bolton, 1998. "A Dynamic Model of the Duration of the Customer's Relationship with a Continuous Service Provider: The Role of Satisfaction," Marketing Science, INFORMS, vol. 17(1), pages 45-65.
    8. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    9. Jean-Claude Deville & Yves Tille, 2004. "Efficient balanced sampling: The cube method," Biometrika, Biometrika Trust, vol. 91(4), pages 893-912, December.
    10. Kahadawala Cooray, 2010. "Generalized Gumbel distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(1), pages 171-179.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koen W. de Bock & Arno de Caigny, 2021. "Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling," Post-Print hal-03391564, HAL.
    2. Chen, Yan & Zhang, Lei & Zhao, Yulu & Xu, Bing, 2022. "Implementation of penalized survival models in churn prediction of vehicle insurance," Journal of Business Research, Elsevier, vol. 153(C), pages 162-171.
    3. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    4. Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
    5. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    6. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
    7. Liu, Zhenkun & Zhang, Ying & Abedin, Mohammad Zoynul & Wang, Jianzhou & Yang, Hufang & Gao, Yuyang & Chen, Yinghao, 2024. "Profit-driven fusion framework based on bagging and boosting classifiers for potential purchaser prediction," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
    8. Petra P. Šimović & Claire Y. T. Chen & Edward W. Sun, 2023. "Classifying the Variety of Customers’ Online Engagement for Churn Prediction with a Mixed-Penalty Logistic Regression," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 451-485, January.
    9. Liu, Zhenkun & Jiang, Ping & De Bock, Koen W. & Wang, Jianzhou & Zhang, Lifang & Niu, Xinsong, 2024. "Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    10. Gattermann-Itschert, Theresa & Thonemann, Ulrich W., 2021. "How training on multiple time slices improves performance in churn prediction," European Journal of Operational Research, Elsevier, vol. 295(2), pages 664-674.
    11. Amin, Adnan & Shah, Babar & Khattak, Asad Masood & Lopes Moreira, Fernando Joaquim & Ali, Gohar & Rocha, Alvaro & Anwar, Sajid, 2019. "Cross-company customer churn prediction in telecommunication: A comparison of data transformation methods," International Journal of Information Management, Elsevier, vol. 46(C), pages 304-319.
    12. Lewlisa Saha & Hrudaya Kumar Tripathy & Tarek Gaber & Hatem El-Gohary & El-Sayed M. El-kenawy, 2023. "Deep Churn Prediction Method for Telecommunication Industry," Sustainability, MDPI, vol. 15(5), pages 1-21, March.
    13. Petra Posedel v{S}imovi'c & Davor Horvatic & Edward W. Sun, 2021. "Classifying variety of customer's online engagement for churn prediction with mixed-penalty logistic regression," Papers 2105.07671, arXiv.org, revised Jul 2021.
    14. Borchert, Philipp & Coussement, Kristof & De Caigny, Arno & De Weerdt, Jochen, 2023. "Extending business failure prediction models with textual website content using deep learning," European Journal of Operational Research, Elsevier, vol. 306(1), pages 348-357.
    15. Kraus, Mathias & Tschernutter, Daniel & Weinzierl, Sven & Zschech, Patrick, 2024. "Interpretable generalized additive neural networks," European Journal of Operational Research, Elsevier, vol. 317(2), pages 303-316.
    16. Lamrhari, Soumaya & Ghazi, Hamid El & Oubrich, Mourad & Faker, Abdellatif El, 2022. "A social CRM analytic framework for improving customer retention, acquisition, and conversion," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    17. Chandrasekhar Valluri & Sudhakar Raju & Vivek H. Patil, 2022. "Customer determinants of used auto loan churn: comparing predictive performance using machine learning techniques," Journal of Marketing Analytics, Palgrave Macmillan, vol. 10(3), pages 279-296, September.
    18. Meire, Matthijs, 2021. "Customer comeback: Empirical insights into the drivers and value of returning customers," Journal of Business Research, Elsevier, vol. 127(C), pages 193-205.
    19. Ballings, Michel & Van den Poel, Dirk, 2015. "CRM in social media: Predicting increases in Facebook usage frequency," European Journal of Operational Research, Elsevier, vol. 244(1), pages 248-260.
    20. Schaeffer, Satu Elisa & Rodriguez Sanchez, Sara Veronica, 2020. "Forecasting client retention — A machine-learning approach," Journal of Retailing and Consumer Services, Elsevier, vol. 52(C).

    More about this item

    Keywords

    churn prediction; machine learning; ensemble technique;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03824873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.