Some searches may not work properly. We apologize for the inconvenience.
My bibliography Save this paperImproving customer attrition prediction by integrating emotions from client/company interaction emails and evaluating multiple classifiers
Author
Abstract
(This abstract was borrowed from another version of this item.)
Suggested Citation
DOI: 10.1016/j.eswa.2008.07.021
Download full text from publisher
To our knowledge, this item is not available for download. To find whether it is available, there are three options:1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.
Other versions of this item:
- K. Coussement & D. Van Den Poel, 2008. "Improving Customer Attrition Prediction by Integrating Emotions from Client/Company Interaction Emails and Evaluating Multiple Classifiers," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 08/527, Ghent University, Faculty of Economics and Business Administration.
References listed on IDEAS
- Buckinx, Wouter & Van den Poel, Dirk, 2005.
"Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting,"
European Journal of Operational Research, Elsevier, vol. 164(1), pages 252-268, July.
- W. Buckinx & D. Van Den Poel, 2003. "Customer Base Analysis: Partial Defection of Behaviorally-Loyal Clients in a Non-Contractual FMCG Retail Setting," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 03/178, Ghent University, Faculty of Economics and Business Administration.
- J. Burez & D. Van Den Poel, 2008. "Handling class imbalance in customer churn prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 08/517, Ghent University, Faculty of Economics and Business Administration.
- Chrysanthos Dellarocas, 2003. "The Digitization of Word of Mouth: Promise and Challenges of Online Feedback Mechanisms," Management Science, INFORMS, vol. 49(10), pages 1407-1424, October.
- K. Coussement & D. Van Den Poel, 2006.
"Churn Prediction in Subscription Services: an Application of Support Vector Machines While Comparing Two Parameter-Selection Techniques,"
Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium
06/412, Ghent University, Faculty of Economics and Business Administration.
- K. Coussement & D. van den Poel, 2008. "Churn prediction in subscription services: an application of support vector machines while comparing two parameter-selection techniques," Post-Print hal-00788096, HAL.
- B. Larivière & D. Van Den Poel, 2004. "Predicting Customer Retention and Profitability by Using Random Forests and Regression Forests Techniques," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/282, Ghent University, Faculty of Economics and Business Administration.
- Thomas, Lyn C., 2000. "A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers," International Journal of Forecasting, Elsevier, vol. 16(2), pages 149-172.
- B. Larivière & D. Van Den Poel, 2004. "Investigating the role of product features in preventing customer churn, by using survival analysis and choice modeling: The case of financial services," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/223, Ghent University, Faculty of Economics and Business Administration.
- Maxham, James III, 2001. "Service recovery's influence on consumer satisfaction, positive word-of-mouth, and purchase intentions," Journal of Business Research, Elsevier, vol. 54(1), pages 11-24, October.
- Bougie, J.R.G. & Pieters, R. & Zeelenberg, M., 2003. "Angry customers don't come back, they get back : The experience and behavioral implications of anger and dissatisfaction in services," Other publications TiSEM 1708fb71-fd68-41d9-b870-e, Tilburg University, School of Economics and Management.
- Van den Poel, Dirk & Lariviere, Bart, 2004.
"Customer attrition analysis for financial services using proportional hazard models,"
European Journal of Operational Research, Elsevier, vol. 157(1), pages 196-217, August.
- D. Van Den Poel & B. Larivière, 2003. "Customer Attrition Analysis For Financial Services Using Proportional Hazard Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 03/164, Ghent University, Faculty of Economics and Business Administration.
- Dellarocas, Chrysanthos, 2003. "The Digitization of Word-of-mouth: Promise and Challenges of Online Feedback Mechanisms," Working papers 4296-03, Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Baesens, Bart & Viaene, Stijn & Van den Poel, Dirk & Vanthienen, Jan & Dedene, Guido, 2002. "Bayesian neural network learning for repeat purchase modelling in direct marketing," European Journal of Operational Research, Elsevier, vol. 138(1), pages 191-211, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Coussement, Kristof & Benoit, Dries Frederik & Van den Poel, Dirk, 2009.
"Improved Marketing Decision Making in a Customer Churn Prediction Context Using Generalized Additive Models,"
Working Papers
2009/18, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
- K. Coussement & D.F. Benoît & D. van den Poel, 2010. "Improved marketing decision making in a customer churn prediction context using generalized additive models," Post-Print halshs-00581701, HAL.
- K. Coussement & D. F. Benoit & D. Van Den Poel, 2009. "Improved Marketing Decision Making in a Customer Churn Prediction Context Using Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/603, Ghent University, Faculty of Economics and Business Administration.
- M. Ballings & D. Van Den Poel & E. Verhagen, 2013. "Evaluating the Added Value of Pictorial Data for Customer Churn Prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/869, Ghent University, Faculty of Economics and Business Administration.
- Philippe Baecke & Dirk Van Den Poel, 2010.
"Improving Purchasing Behavior Predictions By Data Augmentation With Situational Variables,"
International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 9(06), pages 853-872.
- P. Baecke & D. Van Den Poel, 2010. "Improving purchasing behavior predictions by data augmentation with situational variables," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 10/658, Ghent University, Faculty of Economics and Business Administration.
- Ascarza, & Neslin, & Netzer, & Lemmens, Aurélie & Anderson, Zachery & Fader, Peter S. & Gupta, S. & Hardie, B.G.S. & Libai, Barak & Neal, David & Provost, Foster, 2018. "In pursuit of enhanced customer retention management : Review, key issues, and future directions," Other publications TiSEM 28a90d28-6daf-42f1-bd8e-e, Tilburg University, School of Economics and Management.
- Senol Emir & Hasan Dincer & Umit Hacioglu & Serhat Yuksel, 2016. "Random Regression Forest Model using Technical Analysis Variables: An application on Turkish Banking Sector in Borsa Istanbul (BIST)," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 5(3), pages 85-102, April.
- Magdalena Swart & Gerhard Roodt, 2015. "Market segmentation variables as moderators in the prediction of business tourist retention," Service Business, Springer;Pan-Pacific Business Association, vol. 9(3), pages 491-513, September.
- K. W. De Bock & D. Van Den Poel, 2011.
"An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction,"
Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium
11/717, Ghent University, Faculty of Economics and Business Administration.
- K.W. de Bock & D. van den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Post-Print hal-00800160, HAL.
- J. D’Haen & D. Van Den Poel & D. Thorleuchter, 2012. "Predicting Customer Profitability During Acquisition: Finding the Optimal Combination of Data Source and Data Mining Technique," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/818, Ghent University, Faculty of Economics and Business Administration.
- Coussement, Kristof & De Bock, Koen W., 2013.
"Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning,"
Journal of Business Research, Elsevier, vol. 66(9), pages 1629-1636.
- K. Coussement & K.W. de Bock, 2013. "Customer Churn Prediction in the Online Gambling Industry: The Beneficial Effect of Ensemble Learning," Post-Print hal-00788063, HAL.
- Ingrida Vaiciulyte & Zivile Kalsyte & Leonidas Sakalauskas & Darius Plikynas, 2017. "Assessment of market reaction on the share performance on the basis of its visualization in 2D space," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(2), pages 309-318, March.
- Gattermann-Itschert, Theresa & Thonemann, Ulrich W., 2021. "How training on multiple time slices improves performance in churn prediction," European Journal of Operational Research, Elsevier, vol. 295(2), pages 664-674.
- Ballings, Michel & Van den Poel, Dirk, 2015. "CRM in social media: Predicting increases in Facebook usage frequency," European Journal of Operational Research, Elsevier, vol. 244(1), pages 248-260.
- Rocío G. Martínez & Ramon A. Carrasco & Cristina Sanchez-Figueroa & Diana Gavilan, 2021. "An RFM Model Customizable to Product Catalogues and Marketing Criteria Using Fuzzy Linguistic Models: Case Study of a Retail Business," Mathematics, MDPI, vol. 9(16), pages 1-31, August.
- Arezoo Hatefi Ghahfarrokhi & Mehrnoush Shamsfard, 2019. "Tehran Stock Exchange Prediction Using Sentiment Analysis of Online Textual Opinions," Papers 1909.03792, arXiv.org, revised Sep 2019.
- Eva Ascarza & Scott A. Neslin & Oded Netzer & Zachery Anderson & Peter S. Fader & Sunil Gupta & Bruce G. S. Hardie & Aurélie Lemmens & Barak Libai & David Neal & Foster Provost & Rom Schrift, 2018. "In Pursuit of Enhanced Customer Retention Management: Review, Key Issues, and Future Directions," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(1), pages 65-81, March.
- Arezoo Hatefi Ghahfarrokhi & Mehrnoush Shamsfard, 2020. "Tehran stock exchange prediction using sentiment analysis of online textual opinions," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 27(1), pages 22-37, January.
- Mitrović, Sandra & Baesens, Bart & Lemahieu, Wilfried & De Weerdt, Jochen, 2018. "On the operational efficiency of different feature types for telco Churn prediction," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1141-1155.
- L C Thomas, 2010. "Consumer finance: challenges for operational research," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 41-52, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- M. Ballings & D. Van Den Poel & E. Verhagen, 2013. "Evaluating the Added Value of Pictorial Data for Customer Churn Prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/869, Ghent University, Faculty of Economics and Business Administration.
- K. W. De Bock & D. Van Den Poel, 2011.
"An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction,"
Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium
11/717, Ghent University, Faculty of Economics and Business Administration.
- K.W. de Bock & D. van den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Post-Print hal-00800160, HAL.
- K. W. De Bock & D. Van Den Poel, 2012. "Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/805, Ghent University, Faculty of Economics and Business Administration.
- V. L. Miguéis & D. Van Den Poel & A.S. Camanho & J. Falcao E Cunha, 2012. "Modeling Partial Customer Churn: On the Value of First Product-Category Purchase Sequences," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/790, Ghent University, Faculty of Economics and Business Administration.
- Coussement, Kristof & Benoit, Dries Frederik & Van den Poel, Dirk, 2009.
"Improved Marketing Decision Making in a Customer Churn Prediction Context Using Generalized Additive Models,"
Working Papers
2009/18, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
- K. Coussement & D.F. Benoît & D. van den Poel, 2010. "Improved marketing decision making in a customer churn prediction context using generalized additive models," Post-Print halshs-00581701, HAL.
- K. Coussement & D. F. Benoit & D. Van Den Poel, 2009. "Improved Marketing Decision Making in a Customer Churn Prediction Context Using Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/603, Ghent University, Faculty of Economics and Business Administration.
- B. Larivière & D. Van Den Poel, 2005. "Investigating the post-complaint period by means of survival analysis," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/299, Ghent University, Faculty of Economics and Business Administration.
- B. Larivière & D. Van Den Poel, 2004. "Predicting Customer Retention and Profitability by Using Random Forests and Regression Forests Techniques," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/282, Ghent University, Faculty of Economics and Business Administration.
- Lessmann, Stefan & Voß, Stefan, 2009. "A reference model for customer-centric data mining with support vector machines," European Journal of Operational Research, Elsevier, vol. 199(2), pages 520-530, December.
- Heyes, Anthony & Kapur, Sandeep, 2012. "Angry customers, e-word-of-mouth and incentives for quality provision," Journal of Economic Behavior & Organization, Elsevier, vol. 84(3), pages 813-828.
- J. Burez & D. Van Den Poel, 2005. "CRM at a Pay-TV Company: Using Analytical Models to Reduce Customer Attrition by Targeted Marketing for Subscription Services," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/348, Ghent University, Faculty of Economics and Business Administration.
- Coussement, Kristof & De Bock, Koen W., 2013.
"Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning,"
Journal of Business Research, Elsevier, vol. 66(9), pages 1629-1636.
- K. Coussement & K.W. de Bock, 2013. "Customer Churn Prediction in the Online Gambling Industry: The Beneficial Effect of Ensemble Learning," Post-Print hal-00788063, HAL.
- E Lima & C Mues & B Baesens, 2009. "Domain knowledge integration in data mining using decision tables: case studies in churn prediction," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(8), pages 1096-1106, August.
- R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
- Supratim Kundu & Swapnajit Chakraborti, 2022. "A comparative study of online consumer reviews of Apple iPhone across Amazon, Twitter and MouthShut platforms," Electronic Commerce Research, Springer, vol. 22(3), pages 925-950, September.
- Gattermann-Itschert, Theresa & Thonemann, Ulrich W., 2021. "How training on multiple time slices improves performance in churn prediction," European Journal of Operational Research, Elsevier, vol. 295(2), pages 664-674.
- Vera Miguéis & Dirk Poel & Ana Camanho & João Falcão e Cunha, 2012.
"Predicting partial customer churn using Markov for discrimination for modeling first purchase sequences,"
Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(4), pages 337-353, December.
- V. L. Miguéis & D. Van Den Poel & A.S. Camanho & Joao Falcao E Cunha, 2012. "Predicting Partial Customer Churn Using Markov for Discrimination for Modeling First Purchase Sequences," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/806, Ghent University, Faculty of Economics and Business Administration.
- Chowdhury, Nasif, 2016. "The Impact of Electronic Word-of-Mouth on Consumers’ Purchase Intentions in Bangladesh Telecommunication Industry," EconStor Preprints 142747, ZBW - Leibniz Information Centre for Economics.
- Floyd, Kristopher & Freling, Ryan & Alhoqail, Saad & Cho, Hyun Young & Freling, Traci, 2014. "How Online Product Reviews Affect Retail Sales: A Meta-analysis," Journal of Retailing, Elsevier, vol. 90(2), pages 217-232.
- Van den Poel, Dirk & Buckinx, Wouter, 2005.
"Predicting online-purchasing behaviour,"
European Journal of Operational Research, Elsevier, vol. 166(2), pages 557-575, October.
- W.R Buckinx & D. Van Den Poel, 2003. "Predicting Online Purchasing Behavior," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 03/195, Ghent University, Faculty of Economics and Business Administration.
- Chen, Zhen-Yu & Fan, Zhi-Ping & Sun, Minghe, 2012. "A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data," European Journal of Operational Research, Elsevier, vol. 223(2), pages 461-472.
More about this item
Keywords
Churn prediction; Subscription services; Call center email; Classification; Random Forests; Support Vector Machines;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00581595. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.