A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ejor.2012.06.040
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Buckinx, Wouter & Van den Poel, Dirk, 2005.
"Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting,"
European Journal of Operational Research, Elsevier, vol. 164(1), pages 252-268, July.
- W. Buckinx & D. Van Den Poel, 2003. "Customer Base Analysis: Partial Defection of Behaviorally-Loyal Clients in a Non-Contractual FMCG Retail Setting," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 03/178, Ghent University, Faculty of Economics and Business Administration.
- Baesens, Bart & Verstraeten, Geert & Van den Poel, Dirk & Egmont-Petersen, Michael & Van Kenhove, Patrick & Vanthienen, Jan, 2004.
"Bayesian network classifiers for identifying the slope of the customer lifecycle of long-life customers,"
European Journal of Operational Research, Elsevier, vol. 156(2), pages 508-523, July.
- B. Baesens & G. Verstraeten & D. Van Den Poel & M. Egmont-Petersen & P. Van Kenhove & J. Vanthienen, 2002. "Bayesian Network Classifiers for Identifying the Slope of the Customer - Lifecycle of Long-Life Customers," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 02/154, Ghent University, Faculty of Economics and Business Administration.
- P. Tseng, 2001. "Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 109(3), pages 475-494, June.
- D. F. Benoit & D. Van Den Poel, 2009. "Benefits of Quantile Regression for the Analysis of Customer Lifetime Value in a Contractual Setting: An Application in Financial Services," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/551, Ghent University, Faculty of Economics and Business Administration.
- K. Coussement & D. Van Den Poel, 2006.
"Churn Prediction in Subscription Services: an Application of Support Vector Machines While Comparing Two Parameter-Selection Techniques,"
Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium
06/412, Ghent University, Faculty of Economics and Business Administration.
- K. Coussement & D. van den Poel, 2008. "Churn prediction in subscription services: an application of support vector machines while comparing two parameter-selection techniques," Post-Print hal-00788096, HAL.
- Jiayin Qi & Li Zhang & Yanping Liu & Ling Li & Yongpin Zhou & Yao Shen & Liang Liang & Huaizu Li, 2009. "ADTreesLogit model for customer churn prediction," Annals of Operations Research, Springer, vol. 168(1), pages 247-265, April.
- Prinzie, Anita & Van den Poel, Dirk, 2006. "Investigating purchasing-sequence patterns for financial services using Markov, MTD and MTDg models," European Journal of Operational Research, Elsevier, vol. 170(3), pages 710-734, May.
- Lessmann, Stefan & Voß, Stefan, 2009. "A reference model for customer-centric data mining with support vector machines," European Journal of Operational Research, Elsevier, vol. 199(2), pages 520-530, December.
- Glady, Nicolas & Baesens, Bart & Croux, Christophe, 2009. "Modeling churn using customer lifetime value," European Journal of Operational Research, Elsevier, vol. 197(1), pages 402-411, August.
- A. Prinzie & D. Van Den Poel, 2007. "Predicting home-appliance acquisition sequences: Markov/Markov for Discrimination and survival analysis for modeling sequential information in NPTB models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 07/442, Ghent University, Faculty of Economics and Business Administration.
- Crone, Sven F. & Lessmann, Stefan & Stahlbock, Robert, 2006. "The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing," European Journal of Operational Research, Elsevier, vol. 173(3), pages 781-800, September.
- Van den Poel, Dirk & Lariviere, Bart, 2004.
"Customer attrition analysis for financial services using proportional hazard models,"
European Journal of Operational Research, Elsevier, vol. 157(1), pages 196-217, August.
- D. Van Den Poel & B. Larivière, 2003. "Customer Attrition Analysis For Financial Services Using Proportional Hazard Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 03/164, Ghent University, Faculty of Economics and Business Administration.
- A. Prinzie & D. Van Den Poel, 2009. "Modeling complex longitudinal consumer behavior with Dynamic Bayesian Networks: An Acquisition Pattern Analysis application," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/607, Ghent University, Faculty of Economics and Business Administration.
- K. Coussement & D. van den Poel, 2008.
"Integrating the voice of customers through call center emails into a decision support system for churn prediction,"
Post-Print
hal-00788086, HAL.
- K. Coussement & D. Van Den Poel, 2008. "Integrating the Voice of Customers through Call Center Emails into a Decision Support System for Churn Prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 08/502, Ghent University, Faculty of Economics and Business Administration.
- Yoonkyung Lee & Yuwon Kim & Sangjun Lee & Ja-Yong Koo, 2006. "Structured multicategory support vector machines with analysis of variance decomposition," Biometrika, Biometrika Trust, vol. 93(3), pages 555-571, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- K. W. De Bock & D. Van Den Poel, 2012. "Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/805, Ghent University, Faculty of Economics and Business Administration.
- Johannes Habel & Sascha Alavi & Nicolas Heinitz, 2023. "A theory of predictive sales analytics adoption," AMS Review, Springer;Academy of Marketing Science, vol. 13(1), pages 34-54, June.
- Ballings, Michel & Van den Poel, Dirk, 2015. "CRM in social media: Predicting increases in Facebook usage frequency," European Journal of Operational Research, Elsevier, vol. 244(1), pages 248-260.
- Coussement, Kristof & De Bock, Koen W., 2013.
"Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning,"
Journal of Business Research, Elsevier, vol. 66(9), pages 1629-1636.
- K. Coussement & K.W. de Bock, 2013. "Customer Churn Prediction in the Online Gambling Industry: The Beneficial Effect of Ensemble Learning," Post-Print hal-00788063, HAL.
- Brandner, Hubertus & Lessmann, Stefan & Voß, Stefan, 2013. "A memetic approach to construct transductive discrete support vector machines," European Journal of Operational Research, Elsevier, vol. 230(3), pages 581-595.
- R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
- K. W. De Bock & D. Van Den Poel, 2011.
"An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction,"
Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium
11/717, Ghent University, Faculty of Economics and Business Administration.
- K.W. de Bock & D. van den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Post-Print hal-00800160, HAL.
- Gattermann-Itschert, Theresa & Thonemann, Ulrich W., 2021. "How training on multiple time slices improves performance in churn prediction," European Journal of Operational Research, Elsevier, vol. 295(2), pages 664-674.
- Vera Miguéis & Dirk Poel & Ana Camanho & João Falcão e Cunha, 2012.
"Predicting partial customer churn using Markov for discrimination for modeling first purchase sequences,"
Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(4), pages 337-353, December.
- V. L. Miguéis & D. Van Den Poel & A.S. Camanho & Joao Falcao E Cunha, 2012. "Predicting Partial Customer Churn Using Markov for Discrimination for Modeling First Purchase Sequences," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/806, Ghent University, Faculty of Economics and Business Administration.
- V. L. Miguéis & D. Van Den Poel & A.S. Camanho & J. Falcao E Cunha, 2012. "Modeling Partial Customer Churn: On the Value of First Product-Category Purchase Sequences," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/790, Ghent University, Faculty of Economics and Business Administration.
- M. Ballings & D. Van Den Poel & E. Verhagen, 2013. "Evaluating the Added Value of Pictorial Data for Customer Churn Prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/869, Ghent University, Faculty of Economics and Business Administration.
- Fan, Zhi-Ping & Sun, Minghe, 2015. "Behavior-aware user response modeling in social media: Learning from diverse heterogeneous dataAuthor-Name: Chen, Zhen-Yu," European Journal of Operational Research, Elsevier, vol. 241(2), pages 422-434.
- Lessmann, Stefan & Voß, Stefan, 2009. "A reference model for customer-centric data mining with support vector machines," European Journal of Operational Research, Elsevier, vol. 199(2), pages 520-530, December.
- Tang, Leilei & Thomas, Lyn & Fletcher, Mary & Pan, Jiazhu & Marshall, Andrew, 2014. "Assessing the impact of derived behavior information on customer attrition in the financial service industry," European Journal of Operational Research, Elsevier, vol. 236(2), pages 624-633.
- De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
- Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
- De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
- Arno de Caigny & Kristof Coussement & Koen de Bock, 2020. "Leveraging fine-grained transaction data for customer life event predictions," Post-Print hal-02507998, HAL.
- K. Coussement & D. Van Den Poel, 2008.
"Improving Customer Attrition Prediction by Integrating Emotions from Client/Company Interaction Emails and Evaluating Multiple Classifiers,"
Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium
08/527, Ghent University, Faculty of Economics and Business Administration.
- K. Coussement & D. van den Poel, 2009. "Improving customer attrition prediction by integrating emotions from client/company interaction emails and evaluating multiple classifiers," Post-Print halshs-00581595, HAL.
- A. Prinzie & D. Van Den Poel, 2005. "Incorporating sequential information into traditional classification models by using an element/position- sensitive SAM," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/292, Ghent University, Faculty of Economics and Business Administration.
More about this item
Keywords
Data mining; Customer relationship management; Customer churn prediction; Support vector machine; Multiple kernel learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:223:y:2012:i:2:p:461-472. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.