IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v93y2006i3p555-571.html
   My bibliography  Save this article

Structured multicategory support vector machines with analysis of variance decomposition

Author

Listed:
  • Yoonkyung Lee
  • Yuwon Kim
  • Sangjun Lee
  • Ja-Yong Koo

Abstract

The support vector machine has been a popular choice of classification method for many applications in machine learning. While it often outperforms other methods in terms of classification accuracy, the implicit nature of its solution renders the support vector machine less attractive in providing insights into the relationship between covariates and classes. Use of structured kernels can remedy the drawback. Borrowing the flexible model-building idea of functional analysis of variance decomposition, we consider multicategory support vector machines with analysis of variance kernels in this paper. An additional penalty is imposed on the sum of weights of functional subspaces, which encourages a sparse representation of the solution. Incorporation of the additional penalty enhances the interpretability of a resulting classifier with often improved accuracy. The proposed method is demonstrated through simulation studies and an application to real data. Copyright 2006, Oxford University Press.

Suggested Citation

  • Yoonkyung Lee & Yuwon Kim & Sangjun Lee & Ja-Yong Koo, 2006. "Structured multicategory support vector machines with analysis of variance decomposition," Biometrika, Biometrika Trust, vol. 93(3), pages 555-571, September.
  • Handle: RePEc:oup:biomet:v:93:y:2006:i:3:p:555-571
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/93.3.555
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhilan Lou & Jun Shao & Menggang Yu, 2018. "Optimal treatment assignment to maximize expected outcome with multiple treatments," Biometrics, The International Biometric Society, vol. 74(2), pages 506-516, June.
    2. Park, Changyi & Koo, Ja-Yong & Kim, Peter T. & Lee, Jae Won, 2008. "Stepwise feature selection using generalized logistic loss," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3709-3718, March.
    3. Hoai An Le Thi & Manh Cuong Nguyen, 2017. "DCA based algorithms for feature selection in multi-class support vector machine," Annals of Operations Research, Springer, vol. 249(1), pages 273-300, February.
    4. Park, Beomjin & Park, Changyi, 2021. "Kernel variable selection for multicategory support vector machines," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    5. Park, Beomjin & Park, Changyi, 2023. "Multiclass Laplacian support vector machine with functional analysis of variance decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    6. Lee, Sangjun & Park, Changyi & Koo, Ja-Yong, 2011. "Feature selection in the Laplacian support vector machine," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 567-577, January.
    7. Sohn, Insuk & Shim, Jooyong & Hwang, Changha & Kim, Sujong & Lee, Jae Won, 2009. "Informative transcription factor selection using support vector machine-based generalized approximate cross validation criteria," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1727-1735, March.
    8. Chen, Zhen-Yu & Fan, Zhi-Ping & Sun, Minghe, 2012. "A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data," European Journal of Operational Research, Elsevier, vol. 223(2), pages 461-472.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:93:y:2006:i:3:p:555-571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.