IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v74y2018i2p506-516.html
   My bibliography  Save this article

Optimal treatment assignment to maximize expected outcome with multiple treatments

Author

Listed:
  • Zhilan Lou
  • Jun Shao
  • Menggang Yu

Abstract

When there is substantial heterogeneity of treatment effectiveness, it is crucial to identify individualized treatment assignment rules for comparative treatment selection. Traditional approaches directly model clinical outcome and define optimal treatment rule according to the interactions between treatment and covariates. This approach relies on the success of separating the main effects from the covariate–treatment interaction effects, which may not be easy. To overcome this shortcoming, a recent approach, called outcome weighted learning, focuses on building an optimal treatment rule by maximizing the expected clinical outcome related with differential treatments. However, there seems to be a lack of approaches to explicitly deal with three or more treatments. In this article, we propose an outcome weighted learning method that extends estimating individualized treatment rules to multi†treatment case by using a vector hinge loss as a target function. Consistency of the resulting estimator is shown in the article. We demonstrate the performance of our approach in simulation studies and in a real data analysis.

Suggested Citation

  • Zhilan Lou & Jun Shao & Menggang Yu, 2018. "Optimal treatment assignment to maximize expected outcome with multiple treatments," Biometrics, The International Biometric Society, vol. 74(2), pages 506-516, June.
  • Handle: RePEc:bla:biomet:v:74:y:2018:i:2:p:506-516
    DOI: 10.1111/biom.12811
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12811
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12811?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yingqi Zhao & Donglin Zeng & A. John Rush & Michael R. Kosorok, 2012. "Estimating Individualized Treatment Rules Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1106-1118, September.
    2. Yaoyao Xu & Menggang Yu & Ying‐Qi Zhao & Quefeng Li & Sijian Wang & Jun Shao, 2015. "Regularized outcome weighted subgroup identification for differential treatment effects," Biometrics, The International Biometric Society, vol. 71(3), pages 645-653, September.
    3. Shuai Chen & Lu Tian & Tianxi Cai & Menggang Yu, 2017. "A general statistical framework for subgroup identification and comparative treatment scoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1199-1209, December.
    4. Bibhas Chakraborty & Eric B. Laber & Yingqi Zhao, 2013. "Inference for Optimal Dynamic Treatment Regimes Using an Adaptive m-Out-of-n Bootstrap Scheme," Biometrics, The International Biometric Society, vol. 69(3), pages 714-723, September.
    5. Vansteelandt, Stijn & VanderWeele, Tyler J. & Tchetgen, Eric J. & Robins, James M., 2008. "Multiply Robust Inference for Statistical Interactions," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1693-1704.
    6. Yoonkyung Lee & Yuwon Kim & Sangjun Lee & Ja-Yong Koo, 2006. "Structured multicategory support vector machines with analysis of variance decomposition," Biometrika, Biometrika Trust, vol. 93(3), pages 555-571, September.
    7. Lee, Yoonkyung & Lin, Yi & Wahba, Grace, 2004. "Multicategory Support Vector Machines: Theory and Application to the Classification of Microarray Data and Satellite Radiance Data," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 67-81, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunan Wu & Lan Wang, 2021. "Resampling‐based confidence intervals for model‐free robust inference on optimal treatment regimes," Biometrics, The International Biometric Society, vol. 77(2), pages 465-476, June.
    2. Xinyang Huang & Jin Xu, 2020. "Estimating individualized treatment rules with risk constraint," Biometrics, The International Biometric Society, vol. 76(4), pages 1310-1318, December.
    3. Zhang, Haixiang & Huang, Jian & Sun, Liuquan, 2020. "A rank-based approach to estimating monotone individualized two treatment regimes," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2022. "Heterogeneous Employment Effects of Job Search Programs: A Machine Learning Approach," Journal of Human Resources, University of Wisconsin Press, vol. 57(2), pages 597-636.
    2. Shuai Chen & Lu Tian & Tianxi Cai & Menggang Yu, 2017. "A general statistical framework for subgroup identification and comparative treatment scoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1199-1209, December.
    3. Muxuan Liang & Menggang Yu, 2023. "Relative contrast estimation and inference for treatment recommendation," Biometrics, The International Biometric Society, vol. 79(4), pages 2920-2932, December.
    4. Q. Clairon & R. Henderson & N. J. Young & E. D. Wilson & C. J. Taylor, 2021. "Adaptive treatment and robust control," Biometrics, The International Biometric Society, vol. 77(1), pages 223-236, March.
    5. Crystal T. Nguyen & Daniel J. Luckett & Anna R. Kahkoska & Grace E. Shearrer & Donna Spruijt‐Metz & Jaimie N. Davis & Michael R. Kosorok, 2020. "Estimating individualized treatment regimes from crossover designs," Biometrics, The International Biometric Society, vol. 76(3), pages 778-788, September.
    6. Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.
    7. James Y. Dai & C. Jason Liang & Michael LeBlanc & Ross L. Prentice & Holly Janes, 2018. "Case†only approach to identifying markers predicting treatment effects on the relative risk scale," Biometrics, The International Biometric Society, vol. 74(2), pages 753-763, June.
    8. Hoai An Le Thi & Manh Cuong Nguyen, 2017. "DCA based algorithms for feature selection in multi-class support vector machine," Annals of Operations Research, Springer, vol. 249(1), pages 273-300, February.
    9. Park, Beomjin & Park, Changyi, 2021. "Kernel variable selection for multicategory support vector machines," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    10. Yaoyao Xu & Menggang Yu & Ying‐Qi Zhao & Quefeng Li & Sijian Wang & Jun Shao, 2015. "Regularized outcome weighted subgroup identification for differential treatment effects," Biometrics, The International Biometric Society, vol. 71(3), pages 645-653, September.
    11. Baqun Zhang & Min Zhang, 2018. "C‐learning: A new classification framework to estimate optimal dynamic treatment regimes," Biometrics, The International Biometric Society, vol. 74(3), pages 891-899, September.
    12. Xinyang Huang & Jin Xu, 2020. "Estimating individualized treatment rules with risk constraint," Biometrics, The International Biometric Society, vol. 76(4), pages 1310-1318, December.
    13. Alexander J. Ohnmacht & Arndt Stahler & Sebastian Stintzing & Dominik P. Modest & Julian W. Holch & C. Benedikt Westphalen & Linus Hölzel & Marisa K. Schübel & Ana Galhoz & Ali Farnoud & Minhaz Ud-Dea, 2023. "The Oncology Biomarker Discovery framework reveals cetuximab and bevacizumab response patterns in metastatic colorectal cancer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Park, Beomjin & Park, Changyi, 2023. "Multiclass Laplacian support vector machine with functional analysis of variance decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    15. Michael P. Wallace & Erica E. M. Moodie, 2015. "Doubly‐robust dynamic treatment regimen estimation via weighted least squares," Biometrics, The International Biometric Society, vol. 71(3), pages 636-644, September.
    16. Yunan Wu & Lan Wang, 2021. "Resampling‐based confidence intervals for model‐free robust inference on optimal treatment regimes," Biometrics, The International Biometric Society, vol. 77(2), pages 465-476, June.
    17. Park, Changyi & Koo, Ja-Yong & Kim, Peter T. & Lee, Jae Won, 2008. "Stepwise feature selection using generalized logistic loss," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3709-3718, March.
    18. Jingxiang Chen & Haoda Fu & Xuanyao He & Michael R. Kosorok & Yufeng Liu, 2018. "Estimating individualized treatment rules for ordinal treatments," Biometrics, The International Biometric Society, vol. 74(3), pages 924-933, September.
    19. Fan, Yiwei & Zhao, Junlong, 2022. "Safe sample screening rules for multicategory angle-based support vector machines," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    20. Yebin Tao & Lu Wang, 2017. "Adaptive contrast weighted learning for multi-stage multi-treatment decision-making," Biometrics, The International Biometric Society, vol. 73(1), pages 145-155, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:2:p:506-516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.