Fair evaluation of classifier predictive performance based on binary confusion matrix
Author
Abstract
Suggested Citation
DOI: 10.1007/s00180-022-01301-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- K. W. De Bock & D. Van Den Poel, 2011.
"An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction,"
Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium
11/717, Ghent University, Faculty of Economics and Business Administration.
- K.W. de Bock & D. van den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Post-Print hal-00800160, HAL.
- K. Coussement & D. Van Den Poel, 2006.
"Churn Prediction in Subscription Services: an Application of Support Vector Machines While Comparing Two Parameter-Selection Techniques,"
Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium
06/412, Ghent University, Faculty of Economics and Business Administration.
- K. Coussement & D. van den Poel, 2008. "Churn prediction in subscription services: an application of support vector machines while comparing two parameter-selection techniques," Post-Print hal-00788096, HAL.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
- K. W. De Bock & D. Van Den Poel, 2012. "Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/805, Ghent University, Faculty of Economics and Business Administration.
- Muhammad Azeem & Muhammad Usman & A. C. M. Fong, 2017. "A churn prediction model for prepaid customers in telecom using fuzzy classifiers," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 66(4), pages 603-614, December.
- Arno Caigny & Kristof Coussement & Matthijs Meire & Steven Hoornaert, 2025. "Investigating the impact of undersampling and bagging: an empirical investigation for customer attrition modeling," Annals of Operations Research, Springer, vol. 346(3), pages 2401-2421, March.
- Ballings, Michel & Van den Poel, Dirk, 2015. "CRM in social media: Predicting increases in Facebook usage frequency," European Journal of Operational Research, Elsevier, vol. 244(1), pages 248-260.
- Schaeffer, Satu Elisa & Rodriguez Sanchez, Sara Veronica, 2020. "Forecasting client retention — A machine-learning approach," Journal of Retailing and Consumer Services, Elsevier, vol. 52(C).
- Risselada, Hans & Verhoef, Peter C. & Bijmolt, Tammo H.A., 2010. "Staying Power of Churn Prediction Models," Journal of Interactive Marketing, Elsevier, vol. 24(3), pages 198-208.
- Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
- Baumann, Elias & Kern, Jana & Lessmann, Stefan, 2019. "Usage Continuance in Software-as-a-Service," IRTG 1792 Discussion Papers 2019-005, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Yen-Chun Chou & Howard Hao-Chun Chuang, 2018. "A predictive investigation of first-time customer retention in online reservation services," Service Business, Springer;Pan-Pacific Business Association, vol. 12(4), pages 685-699, December.
- Koen W. de Bock & Arno de Caigny, 2021. "Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling," Post-Print hal-03391564, HAL.
- Slãvescu Ecaterina Oana & Panait Iulian, 2012.
"Improving Customer Churn Models as one of Customer Relationship Management Business Solutions for the Telecommunication Industry,"
Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(1), pages 1156-1160, May.
- Slavescu, Ecaterina & Panait, Iulian, 2012. "Improving customer churn models as one of customer relationship management business solutions for the telecommunication industry," MPRA Paper 44250, University Library of Munich, Germany.
- De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
- Johannes Habel & Sascha Alavi & Nicolas Heinitz, 2023. "A theory of predictive sales analytics adoption," AMS Review, Springer;Academy of Marketing Science, vol. 13(1), pages 34-54, June.
- Chen, Yan & Zhang, Lei & Zhao, Yulu & Xu, Bing, 2022. "Implementation of penalized survival models in churn prediction of vehicle insurance," Journal of Business Research, Elsevier, vol. 153(C), pages 162-171.
- K. Coussement & D. Van Den Poel, 2008.
"Improving Customer Attrition Prediction by Integrating Emotions from Client/Company Interaction Emails and Evaluating Multiple Classifiers,"
Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium
08/527, Ghent University, Faculty of Economics and Business Administration.
- K. Coussement & D. van den Poel, 2009. "Improving customer attrition prediction by integrating emotions from client/company interaction emails and evaluating multiple classifiers," Post-Print halshs-00581595, HAL.
- Jiayin Qi & Li Zhang & Yanping Liu & Ling Li & Yongpin Zhou & Yao Shen & Liang Liang & Huaizu Li, 2009. "ADTreesLogit model for customer churn prediction," Annals of Operations Research, Springer, vol. 168(1), pages 247-265, April.
- Soyoung Park & Se-Yeong Hamm & Jinsoo Kim, 2019. "Performance Evaluation of the GIS-Based Data-Mining Techniques Decision Tree, Random Forest, and Rotation Forest for Landslide Susceptibility Modeling," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
- K. W. De Bock & D. Van Den Poel, 2011.
"An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction,"
Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium
11/717, Ghent University, Faculty of Economics and Business Administration.
- K.W. de Bock & D. van den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Post-Print hal-00800160, HAL.
- Seungwook Kim & Daeyoung Choi & Eunjung Lee & Wonjong Rhee, 2017. "Churn prediction of mobile and online casual games using play log data," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-19, July.
More about this item
Keywords
Class imbalance; Binary confusion matrix; Predictive performance measures; Customer churn prediction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:1:d:10.1007_s00180-022-01301-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.