IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/44250.html
   My bibliography  Save this paper

Improving customer churn models as one of customer relationship management business solutions for the telecommunication industry

Author

Listed:
  • Slavescu, Ecaterina
  • Panait, Iulian

Abstract

Nowadays, when companies are dealing with severe global competition, they are making serious investments in Customer Relationship Management (CRM) strategies. One of the cornerstones in CRM is customer churn prediction, the practice of determining a mathematical relation between customer characteristics and the likelihood to end the business contract with the company. This paper focuses on how to better support marketing decision makers in identifying risky customers in telecom industry by using Predictive Models. Based on historical data regarding the customer base for a telecom company, we proposed a Predictive Model using Logistic Regression technique and evaluate its efficiency as compared to the random selection. In the future, we will focus on extending our study by integrating more business considerations and mining models in order to adjust the churn models or redesign marketing activities for the telecom industry.

Suggested Citation

  • Slavescu, Ecaterina & Panait, Iulian, 2012. "Improving customer churn models as one of customer relationship management business solutions for the telecommunication industry," MPRA Paper 44250, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:44250
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/44250/1/MPRA_paper_44250.pdf
    File Function: original version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Panait, Iulian, 2011. "Stock market diagnosis," MPRA Paper 44247, University Library of Munich, Germany.
    2. K. Coussement & D. Van Den Poel, 2006. "Churn Prediction in Subscription Services: an Application of Support Vector Machines While Comparing Two Parameter-Selection Techniques," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/412, Ghent University, Faculty of Economics and Business Administration.
    3. B. Larivière & D. Van Den Poel, 2004. "Investigating the role of product features in preventing customer churn, by using survival analysis and choice modeling: The case of financial services," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/223, Ghent University, Faculty of Economics and Business Administration.
    4. Kim, Moon-Koo & Park, Myeong-Cheol & Jeong, Dong-Heon, 2004. "The effects of customer satisfaction and switching barrier on customer loyalty in Korean mobile telecommunication services," Telecommunications Policy, Elsevier, vol. 28(2), pages 145-159, March.
    5. K. Coussement & D. Van den Poel, 2008. "Churn prediction in subscription services: an application of support vector machines while comparing two parameter-selection techniques," Post-Print hal-00788096, HAL.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    predictive models; data mining; churn; time series econometrics;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:44250. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.