IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v189y2025ics0148296324006635.html
   My bibliography  Save this article

Profit-driven pre-processing in B2B customer churn modeling using fairness techniques

Author

Listed:
  • Rahman, Shimanto
  • Janssens, Bram
  • Bogaert, Matthias

Abstract

This paper proposes a novel approach to enhance the profitability of business-to-business (B2B) customer retention campaigns through profit-driven pre-processing techniques, deviating from the traditional focus on in- and post-processing methods. Our study explores the effectiveness of three pre-processing techniques—massaging, reweighing, and resampling—derived from fairness literature. We evaluate these techniques alongside a baseline model and three state-of-the-art in- and post-processing methods using the EMPB and a newly introduced metric, the Area Under the Expected Profit Curve (AUEPC). Our findings demonstrate that reweighing and resampling consistently outperform baselines up to a 49% profit increase. Furthermore, compared to state-of-the-art algorithms, reweighing and resampling methods surpass in-processing techniques and perform favorably against post-processing methods, particularly at optimal customer contact rates. However, post-processing methods are preferred under budget constraints. This study contributes to the current literature by offering a simpler, model-agnostic, and less computationally expensive framework for profit-driven churn modeling in B2B contexts.

Suggested Citation

  • Rahman, Shimanto & Janssens, Bram & Bogaert, Matthias, 2025. "Profit-driven pre-processing in B2B customer churn modeling using fairness techniques," Journal of Business Research, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:jbrese:v:189:y:2025:i:c:s0148296324006635
    DOI: 10.1016/j.jbusres.2024.115159
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296324006635
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2024.115159?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rauyruen, Papassapa & Miller, Kenneth E., 2007. "Relationship quality as a predictor of B2B customer loyalty," Journal of Business Research, Elsevier, vol. 60(1), pages 21-31, January.
    2. Amin, Adnan & Shah, Babar & Khattak, Asad Masood & Lopes Moreira, Fernando Joaquim & Ali, Gohar & Rocha, Alvaro & Anwar, Sajid, 2019. "Cross-company customer churn prediction in telecommunication: A comparison of data transformation methods," International Journal of Information Management, Elsevier, vol. 46(C), pages 304-319.
    3. J. Robert Baum & Stefan Wally, 2003. "Strategic decision speed and firm performance," Strategic Management Journal, Wiley Blackwell, vol. 24(11), pages 1107-1129, November.
    4. Aurélie Lemmens & Sunil Gupta, 2020. "Managing Churn to Maximize Profits," Marketing Science, INFORMS, vol. 39(5), pages 956-973, September.
    5. Amin, Adnan & Al-Obeidat, Feras & Shah, Babar & Adnan, Awais & Loo, Jonathan & Anwar, Sajid, 2019. "Customer churn prediction in telecommunication industry using data certainty," Journal of Business Research, Elsevier, vol. 94(C), pages 290-301.
    6. Jiang, Ping & Liu, Zhenkun & Abedin, Mohammad Zoynul & Wang, Jianzhou & Yang, Wendong & Dong, Qingli, 2024. "Profit-driven weighted classifier with interpretable ability for customer churn prediction," Omega, Elsevier, vol. 125(C).
    7. Zhenkun Liu & Ping Jiang & Koen W. de Bock & Jianzhou Wang & Lifang Zhang & Xinsong Niu, 2024. "Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction," Post-Print hal-04273578, HAL.
    8. B. Larivière & D. Van Den Poel, 2004. "Investigating the role of product features in preventing customer churn, by using survival analysis and choice modeling: The case of financial services," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/223, Ghent University, Faculty of Economics and Business Administration.
    9. Bram Janssens & Matthias Bogaert & Mathijs Maton, 2023. "Predicting the next Pogačar: a data analytical approach to detect young professional cycling talents," Annals of Operations Research, Springer, vol. 325(1), pages 557-588, June.
    10. Arno de Caigny & Kristof Coussement & Koen W. de Bock, 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," Post-Print hal-01741661, HAL.
    11. van Giffen, Benjamin & Herhausen, Dennis & Fahse, Tobias, 2022. "Overcoming the pitfalls and perils of algorithms: A classification of machine learning biases and mitigation methods," Journal of Business Research, Elsevier, vol. 144(C), pages 93-106.
    12. Liu, Zhenkun & Jiang, Ping & De Bock, Koen W. & Wang, Jianzhou & Zhang, Lifang & Niu, Xinsong, 2024. "Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    13. James Heckman, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    14. Kursa, Miron B. & Rudnicki, Witold R., 2010. "Feature Selection with the Boruta Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i11).
    15. Feng, Yi & Yin, Yunqiang & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Marra, Marianna & Guo, Yihan, 2024. "Enhancing e-commerce customer churn management with a profit- and AUC-focused prescriptive analytics approach," Journal of Business Research, Elsevier, vol. 184(C).
    16. Bas Donkers & Peter Verhoef & Martijn Jong, 2007. "Modeling CLV: A test of competing models in the insurance industry," Quantitative Marketing and Economics (QME), Springer, vol. 5(2), pages 163-190, June.
    17. K. Coussement & D. Van Den Poel, 2006. "Churn Prediction in Subscription Services: an Application of Support Vector Machines While Comparing Two Parameter-Selection Techniques," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/412, Ghent University, Faculty of Economics and Business Administration.
    18. Kristof Coussement & Stefan Lessmann & Geert Verstraeten, 2017. "A comparative analysis of data preparation algorithms for customer churn prediction: A case study in the telecommunication industry," Post-Print hal-01745261, HAL.
    19. Ho, Mia Hsiao-Wen & Chung, Henry F.L., 2020. "Customer engagement, customer equity and repurchase intention in mobile apps," Journal of Business Research, Elsevier, vol. 121(C), pages 13-21.
    20. Lilien, Gary L., 2016. "The B2B Knowledge Gap," International Journal of Research in Marketing, Elsevier, vol. 33(3), pages 543-556.
    21. M. Ballings & D. Van Den Poel, 2012. "The Relevant Length of Customer Event History for Churn Prediction: How long is long enough?," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/804, Ghent University, Faculty of Economics and Business Administration.
    22. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    23. Höppner, Sebastiaan & Stripling, Eugen & Baesens, Bart & Broucke, Seppe vanden & Verdonck, Tim, 2020. "Profit driven decision trees for churn prediction," European Journal of Operational Research, Elsevier, vol. 284(3), pages 920-933.
    24. Verbeke, Wouter & Dejaeger, Karel & Martens, David & Hur, Joon & Baesens, Bart, 2012. "New insights into churn prediction in the telecommunication sector: A profit driven data mining approach," European Journal of Operational Research, Elsevier, vol. 218(1), pages 211-229.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bram Janssens & Matthias Bogaert & Astrid Bagué & Dirk Van den Poel, 2024. "B2Boost: instance-dependent profit-driven modelling of B2B churn," Annals of Operations Research, Springer, vol. 341(1), pages 267-293, October.
    2. Feng, Yi & Yin, Yunqiang & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Marra, Marianna & Guo, Yihan, 2024. "Enhancing e-commerce customer churn management with a profit- and AUC-focused prescriptive analytics approach," Journal of Business Research, Elsevier, vol. 184(C).
    3. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    4. Liu, Zhenkun & Zhang, Ying & Abedin, Mohammad Zoynul & Wang, Jianzhou & Yang, Hufang & Gao, Yuyang & Chen, Yinghao, 2024. "Profit-driven fusion framework based on bagging and boosting classifiers for potential purchaser prediction," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
    5. Gattermann-Itschert, Theresa & Thonemann, Ulrich W., 2021. "How training on multiple time slices improves performance in churn prediction," European Journal of Operational Research, Elsevier, vol. 295(2), pages 664-674.
    6. Liu, Zhenkun & Jiang, Ping & De Bock, Koen W. & Wang, Jianzhou & Zhang, Lifang & Niu, Xinsong, 2024. "Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    7. Lewlisa Saha & Hrudaya Kumar Tripathy & Tarek Gaber & Hatem El-Gohary & El-Sayed M. El-kenawy, 2023. "Deep Churn Prediction Method for Telecommunication Industry," Sustainability, MDPI, vol. 15(5), pages 1-21, March.
    8. Arno Caigny & Kristof Coussement & Matthijs Meire & Steven Hoornaert, 2025. "Investigating the impact of undersampling and bagging: an empirical investigation for customer attrition modeling," Annals of Operations Research, Springer, vol. 346(3), pages 2401-2421, March.
    9. Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
    10. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
    11. De Caigny, Arno & Coussement, Kristof & Hoornaert, Steven & Meire, Matthijs, 2025. "Life event-based marketing using AI," Journal of Business Research, Elsevier, vol. 193(C).
    12. De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
    13. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
    14. Meire, Matthijs, 2021. "Customer comeback: Empirical insights into the drivers and value of returning customers," Journal of Business Research, Elsevier, vol. 127(C), pages 193-205.
    15. Schaeffer, Satu Elisa & Rodriguez Sanchez, Sara Veronica, 2020. "Forecasting client retention — A machine-learning approach," Journal of Retailing and Consumer Services, Elsevier, vol. 52(C).
    16. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    17. Koen W. de Bock & Arno de Caigny, 2021. "Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling," Post-Print hal-03391564, HAL.
    18. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    19. Chen, Yan & Zhang, Lei & Zhao, Yulu & Xu, Bing, 2022. "Implementation of penalized survival models in churn prediction of vehicle insurance," Journal of Business Research, Elsevier, vol. 153(C), pages 162-171.
    20. Ebru Pekel Ozmen & Tuncay Ozcan, 2022. "A novel deep learning model based on convolutional neural networks for employee churn prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 539-550, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:189:y:2025:i:c:s0148296324006635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.