IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v297y2022i1p369-379.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Targeting customers under response-dependent costs

Author

Listed:
  • Haupt, Johannes
  • Lessmann, Stefan

Abstract

This study provides a formal analysis of the customer targeting problem when the cost for a marketing action depends on the customer response and proposes a framework to estimate the decision variables for campaign profit optimization. Targeting a customer is profitable if the impact and associated profit of the marketing treatment are higher than its cost. Despite the growing literature on uplift models to identify the strongest treatment-responders, no research has investigated optimal targeting when the costs of the treatment are unknown at the time of the targeting decision. Stochastic costs are ubiquitous in direct marketing and customer retention campaigns because marketing incentives are conditioned on a positive customer response. This study makes two contributions to the literature, which are evaluated on an e-commerce coupon targeting campaign. First, we formally analyze the targeting decision problem under response-dependent costs. Profit-optimal targeting requires an estimate of the treatment effect on the customer and an estimate of the customer response probability under treatment. The empirical results demonstrate that the consideration of treatment cost substantially increases campaign profit when used for customer targeting in combination with an estimate of the average or customer-level treatment effect. Second, we propose a framework to jointly estimate the treatment effect and the response probability by combining methods for causal inference with a hurdle mixture model. The proposed causal hurdle model achieves competitive campaign profit while streamlining model building. All codes are available at https://github.com/Humboldt-WI/response-dependent-costs.

Suggested Citation

  • Haupt, Johannes & Lessmann, Stefan, 2022. "Targeting customers under response-dependent costs," European Journal of Operational Research, Elsevier, vol. 297(1), pages 369-379.
  • Handle: RePEc:eee:ejores:v:297:y:2022:i:1:p:369-379
    DOI: 10.1016/j.ejor.2021.05.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721004732
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.05.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Cuiqing & Wang, Zhao & Zhao, Huimin, 2019. "A prediction-driven mixture cure model and its application in credit scoring," European Journal of Operational Research, Elsevier, vol. 277(1), pages 20-31.
    2. Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2021. "Deep Neural Networks for Estimation and Inference," Econometrica, Econometric Society, vol. 89(1), pages 181-213, January.
    3. repec:oup:emjrnl:v:24:y:2021:i:1:p:134-161. is not listed on IDEAS
    4. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    5. Robin Gubela & Artem Bequé & Stefan Lessmann & Fabian Gebert, 2019. "Conversion Uplift in E-Commerce: A Systematic Benchmark of Modeling Strategies," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 747-791, May.
    6. Annika Baumann & Johannes Haupt & Fabian Gebert & Stefan Lessmann, 2019. "The Price of Privacy," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(4), pages 413-431, August.
    7. Jan Roelf Bult & Tom Wansbeek, 1995. "Optimal Selection for Direct Mail," Marketing Science, INFORMS, vol. 14(4), pages 378-394.
    8. Aurélie Lemmens & Sunil Gupta, 2020. "Managing Churn to Maximize Profits," Marketing Science, INFORMS, vol. 39(5), pages 956-973, September.
    9. Arno de Caigny & Kristof Coussement & Koen W. de Bock, 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," Post-Print hal-01741661, HAL.
    10. Bas Donkers & Richard Paap & Jedid‐Jah Jonker & Philip Hans Franses, 2006. "Deriving target selection rules from endogenously selected samples," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 549-562, July.
    11. Stefan Lessmann & Kristof Coussement & Koen W. de Bock & Johannes Haupt, 2019. "Targeting customers for profit: An ensemble learning framework to support marketing decision-making," Post-Print hal-02275955, HAL.
    12. Eva Ascarza & Bruce G. S. Hardie, 2013. "A Joint Model of Usage and Churn in Contractual Settings," Marketing Science, INFORMS, vol. 32(4), pages 570-590, July.
    13. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    14. Hruschka, Harald, 2010. "Considering endogeneity for optimal catalog allocation in direct marketing," European Journal of Operational Research, Elsevier, vol. 206(1), pages 239-247, October.
    15. Gubela, Robin M. & Lessmann, Stefan & Jaroszewicz, Szymon, 2020. "Response transformation and profit decomposition for revenue uplift modeling," European Journal of Operational Research, Elsevier, vol. 283(2), pages 647-661.
    16. X Nie & S Wager, 2021. "Quasi-oracle estimation of heterogeneous treatment effects [TensorFlow: A system for large-scale machine learning]," Biometrika, Biometrika Trust, vol. 108(2), pages 299-319.
    17. Verbeke, Wouter & Dejaeger, Karel & Martens, David & Hur, Joon & Baesens, Bart, 2012. "New insights into churn prediction in the telecommunication sector: A profit driven data mining approach," European Journal of Operational Research, Elsevier, vol. 218(1), pages 211-229.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bokelmann, Björn & Lessmann, Stefan, 2024. "Improving uplift model evaluation on randomized controlled trial data," European Journal of Operational Research, Elsevier, vol. 313(2), pages 691-707.
    2. Verbeke, Wouter & Olaya, Diego & Guerry, Marie-Anne & Van Belle, Jente, 2023. "To do or not to do? Cost-sensitive causal classification with individual treatment effect estimates," European Journal of Operational Research, Elsevier, vol. 305(2), pages 838-852.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes Haupt & Stefan Lessmann, 2020. "Targeting customers under response-dependent costs," Papers 2003.06271, arXiv.org, revised Aug 2021.
    2. Haupt, Johannes & Lessmann, Stefan, 2020. "Targeting Cutsomers Under Response-Dependent Costs," IRTG 1792 Discussion Papers 2020-005, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    3. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    4. Koen W. de Bock & Arno de Caigny, 2021. "Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling," Post-Print hal-03391564, HAL.
    5. Bokelmann, Björn & Lessmann, Stefan, 2024. "Improving uplift model evaluation on randomized controlled trial data," European Journal of Operational Research, Elsevier, vol. 313(2), pages 691-707.
    6. Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
    7. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    8. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W. & Lessmann, Stefan, 2020. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1563-1578.
    9. De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
    10. Arno de Caigny & Kristof Coussement & Koen de Bock, 2020. "Leveraging fine-grained transaction data for customer life event predictions," Post-Print hal-02507998, HAL.
    11. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
    12. Goic, Marcel & Rojas, Andrea & Saavedra, Ignacio, 2021. "The Effectiveness of Triggered Email Marketing in Addressing Browse Abandonments," Journal of Interactive Marketing, Elsevier, vol. 55(C), pages 118-145.
    13. Chandrasekhar Valluri & Sudhakar Raju & Vivek H. Patil, 2022. "Customer determinants of used auto loan churn: comparing predictive performance using machine learning techniques," Journal of Marketing Analytics, Palgrave Macmillan, vol. 10(3), pages 279-296, September.
    14. Liu, Zhenkun & Jiang, Ping & De Bock, Koen W. & Wang, Jianzhou & Zhang, Lifang & Niu, Xinsong, 2024. "Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    15. Meire, Matthijs, 2021. "Customer comeback: Empirical insights into the drivers and value of returning customers," Journal of Business Research, Elsevier, vol. 127(C), pages 193-205.
    16. Gattermann-Itschert, Theresa & Thonemann, Ulrich W., 2021. "How training on multiple time slices improves performance in churn prediction," European Journal of Operational Research, Elsevier, vol. 295(2), pages 664-674.
    17. Amin, Adnan & Shah, Babar & Khattak, Asad Masood & Lopes Moreira, Fernando Joaquim & Ali, Gohar & Rocha, Alvaro & Anwar, Sajid, 2019. "Cross-company customer churn prediction in telecommunication: A comparison of data transformation methods," International Journal of Information Management, Elsevier, vol. 46(C), pages 304-319.
    18. Szeląg, Marcin & Słowiński, Roman, 2024. "Explaining and predicting customer churn by monotonic rules induced from ordinal data," European Journal of Operational Research, Elsevier, vol. 317(2), pages 414-424.
    19. Holtrop, Niels & Wieringa, Jaap E., 2023. "Timing customer reactivation initiatives," International Journal of Research in Marketing, Elsevier, vol. 40(3), pages 570-589.
    20. Schaeffer, Satu Elisa & Rodriguez Sanchez, Sara Veronica, 2020. "Forecasting client retention — A machine-learning approach," Journal of Retailing and Consumer Services, Elsevier, vol. 52(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:297:y:2022:i:1:p:369-379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.