Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction
Author
Abstract
Suggested Citation
DOI: 10.1016/j.techfore.2023.122945
Note: View the original document on HAL open archive server: https://hal.science/hal-04273578v1
Download full text from publisher
References listed on IDEAS
- Gandomi, A. & Zolfaghari, S., 2013. "Profitability of loyalty reward programs: An analytical investigation," Omega, Elsevier, vol. 41(4), pages 797-807.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Niu, Zhewen & Han, Xiaoqing & Zhang, Dongxia & Wu, Yuxiang & Lan, Songyan, 2024. "Interpretable wind power forecasting combining seasonal-trend representations learning with temporal fusion transformers architecture," Energy, Elsevier, vol. 306(C).
- Feng, Yi & Yin, Yunqiang & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Marra, Marianna & Guo, Yihan, 2024. "Enhancing e-commerce customer churn management with a profit- and AUC-focused prescriptive analytics approach," Journal of Business Research, Elsevier, vol. 184(C).
- Liu, Zhenkun & Zhang, Ying & Abedin, Mohammad Zoynul & Wang, Jianzhou & Yang, Hufang & Gao, Yuyang & Chen, Yinghao, 2024. "Profit-driven fusion framework based on bagging and boosting classifiers for potential purchaser prediction," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
- Wang, Lei & Wang, Xinyu & Zhao, Zhongchao, 2024. "Mid-term electricity demand forecasting using improved multi-mode reconstruction and particle swarm-enhanced support vector regression," Energy, Elsevier, vol. 304(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kang, Jun & Alejandro, Thomas Brashear & Groza, Mark D., 2015. "Customer–company identification and the effectiveness of loyalty programs," Journal of Business Research, Elsevier, vol. 68(2), pages 464-471.
- Gandomi, Amir & Zolfaghari, Saeed, 2018. "To tier or not to tier: An analysis of multitier loyalty programs׳ optimality conditions," Omega, Elsevier, vol. 74(C), pages 20-36.
- Amir Gandomi & Amirhossein Bazargan & Saeed Zolfaghari, 2019. "Designing competitive loyalty programs: a stochastic game-theoretic model to guide the choice of reward structure," Annals of Operations Research, Springer, vol. 280(1), pages 267-298, September.
- Bazargan, Amirhossein & Karray, Salma & Zolfaghari, Saeed, 2017. "Modeling reward expiry for loyalty programs in a competitive market," International Journal of Production Economics, Elsevier, vol. 193(C), pages 352-364.
- Paramonovs Sergejs & Ijevleva Ksenija, 2015. "Factor Analysis of Passengers’ Satisfaction at “RIGA International Airport”," Economics and Business, Sciendo, vol. 27(1), pages 46-52, August.
- Liu, Zhenkun & Jiang, Ping & De Bock, Koen W. & Wang, Jianzhou & Zhang, Lifang & Niu, Xinsong, 2024. "Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
- Guo, Xingchen & Jiang, Changmin & Jiang, Siming & Guo, Huanxiu, 2023. "Making airline coalition frequent-flyer programs profitable: An analytical investigation," Transport Policy, Elsevier, vol. 141(C), pages 245-262.
- Bazargan, Amirhossein & Karray, Salma & Zolfaghari, Saeed, 2018. "‘Buy n times, get one free’ loyalty cards: Are they profitable for competing firms? A game theoretic analysis," European Journal of Operational Research, Elsevier, vol. 265(2), pages 621-630.
- Maldonado, Sebastián & Domínguez, Gonzalo & Olaya, Diego & Verbeke, Wouter, 2021. "Profit-driven churn prediction for the mutual fund industry: A multisegment approach," Omega, Elsevier, vol. 100(C).
- Klein, Robert & Kolb, Johannes, 2015. "Maximizing customer equity subject to capacity constraints," Omega, Elsevier, vol. 55(C), pages 111-125.
- Hu, Li & Ma, Hoi-Lam & Wang, Li & Liu, Yang, 2023. "Hiding or disclosing? Information discrimination in member-only discounts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
- McLean, Graeme & Osei-Frimpong, Kofi & Al-Nabhani, Khalid & Marriott, Hannah, 2020. "Examining consumer attitudes towards retailers' m-commerce mobile applications – An initial adoption vs. continuous use perspective," Journal of Business Research, Elsevier, vol. 106(C), pages 139-157.
- Yang, Hai & Shao, Chaoyi & Wang, Hai & Ye, Jieping, 2020. "Integrated reward scheme and surge pricing in a ridesourcing market," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 126-142.
- Wang, Hai & Yang, Hai, 2019. "Ridesourcing systems: A framework and review," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 122-155.
- Nishio, Kazuki & Hoshino, Takahiro, 2022. "Joint modeling of effects of customer tier program on customer purchase duration and purchase amount," Journal of Retailing and Consumer Services, Elsevier, vol. 66(C).
More about this item
Keywords
Bayesian optimization; Customer churn prediction; Extreme gradient boosting tree; Profit maximization; Profit-driven customer churn prediction; Sensitivity analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04273578. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.