IDEAS home Printed from https://ideas.repec.org/a/eee/joreco/v85y2025ics0969698925000670.html
   My bibliography  Save this article

Improving customer retention in taxi industry using travel data analytics: A churn prediction study

Author

Listed:
  • Loureiro, A.L.D.
  • Miguéis, V.L.
  • Costa, Ã lvaro
  • Ferreira, Michel

Abstract

The retention of public transport users is widely acknowledged as a paramount challenge in the path towards the establishment of more sustainable cities and societies. In this setting, in which no contractual relationship with customers exists, an early and accurate prediction of whether a customer will remain with the company or leave, assumes great significance for businesses to develop effective retention strategies. This work focuses on this topic by identifying potential churners based on their past travel behavior. To achieve this, we developed a set of classification models using various machine learning techniques. These models were then employed as base learners within a stacking ensemble. All classifiers were developed with a profit-driven approach, optimizing for expected maximum profit. Finally, we calculated Shapley Additive Explanation values to enhance the interpretability of the proposed classifiers. The performance of the predictive models was evaluated using the data of taxi services recorded in a Portuguese city for 52 months. A broad range of predictors is proposed, including recency and frequency measures of taxi usage as well as others related to customers' satisfaction level. The predictive power of the models was also assessed for specific proportions of higher risk customers. All models have shown the capability to identify churners accurately. This study innovates in evaluating the one-to-one service provider company-customer relationship in the context of taxi industry. Retention actions to promote customers loyalty and enhance retention are also suggested.

Suggested Citation

  • Loureiro, A.L.D. & Miguéis, V.L. & Costa, à lvaro & Ferreira, Michel, 2025. "Improving customer retention in taxi industry using travel data analytics: A churn prediction study," Journal of Retailing and Consumer Services, Elsevier, vol. 85(C).
  • Handle: RePEc:eee:joreco:v:85:y:2025:i:c:s0969698925000670
    DOI: 10.1016/j.jretconser.2025.104288
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969698925000670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jretconser.2025.104288?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:joreco:v:85:y:2025:i:c:s0969698925000670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-retailing-and-consumer-services .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.