IDEAS home Printed from https://ideas.repec.org/a/bla/canjag/v73y2025i2p155-180.html
   My bibliography  Save this article

Environmental and technical efficiency of French suckler sheep farms under pollution‐generating technologies: A multi‐equation stochastic frontier approach using info‐metrics

Author

Listed:
  • Jean‐Joseph Minviel
  • Marc Benoit
  • Laure Latruffe

Abstract

Reducing the negative environmental impact of production activities without (substantial) loss of production is a crucial challenge for the agricultural sector. Investigating farms' environmental and technical efficiency (TE) levels and drivers can contribute to addressing this issue. In this regard, based on recent theoretical developments on the appropriate handling of undesirable outputs in the modeling of production technologies, this paper introduces a multi‐equation stochastic frontier framework for technical and environmental efficiency (EE) analysis. This framework is applied to a sample of French suckler sheep farms. The results indicate that, on average, farms in the sample can increase their desirable output by 20% without using more inputs while reducing their greenhouse gas emissions by 24%. Findings also show that relatively high (low) levels of TE are associated with relatively low (high) levels of EE and that the likelihood for a farm to be both technically and environmentally efficient is relatively low. Only 32% of the farms in the sample have a high level of TE and EE. Drivers such as decoupled direct payments are positively associated with EE and negatively associated with TE, while no significant effect is found for green direct payments. La réduction des impacts environnementaux négatifs des activités de production sans perte (substantielle) de production est un défi crucial pour le secteur agricole. L'étude des niveaux et des facteurs d'efficience environnementale et technique des exploitations agricoles peut contribuer à résoudre ce problème. À cet égard, sur la base de développements théoriques récents concernant le traitement approprié des outputs indésirables dans la modélisation des technologies de production, cet article introduit une approche de frontière stochastique multi‐équations pour l'analyse de l'efficience technique et environnementale. Ce cadre est appliqué à un échantillon d'exploitations françaises d'élevage d'ovins allaitants. Les résultats indiquent qu'en moyenne, les exploitations de l'échantillon peuvent augmenter leur production de viande de 20% sans utiliser davantage d'intrants, tout en réduisant leurs émissions de gaz à effet de serre de 24%. Les résultats montrent également que des niveaux relativement élevés (faibles) d'efficience technique sont associés à des niveaux relativement faibles (élevés) d'efficience environnementale et que la probabilité qu'une exploitation soit à la fois efficiente sur le plan technique et environnemental est relativement faible. Seulement 32% des exploitations de l'échantillon ont un niveau élevé d'efficience technique et environnementale. Des facteurs tels que les paiements directs découplés sont positivement associés à l'efficience environnementale et négativement associés à l'efficience technique, tandis qu'aucun effet significatif n'est constaté pour les paiements directs verts.

Suggested Citation

  • Jean‐Joseph Minviel & Marc Benoit & Laure Latruffe, 2025. "Environmental and technical efficiency of French suckler sheep farms under pollution‐generating technologies: A multi‐equation stochastic frontier approach using info‐metrics," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 73(2), pages 155-180, June.
  • Handle: RePEc:bla:canjag:v:73:y:2025:i:2:p:155-180
    DOI: 10.1111/cjag.12384
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/cjag.12384
    Download Restriction: no

    File URL: https://libkey.io/10.1111/cjag.12384?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:canjag:v:73:y:2025:i:2:p:155-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/caefmea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.