IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v236y2014i2p706-717.html
   My bibliography  Save this article

Measuring technical and environmental efficiency in a state-contingent technology

Author

Listed:
  • Serra, Teresa
  • Chambers, Robert G.
  • Oude Lansink, Alfons

Abstract

Most developed countries support farming activities through policies that are tailored to meet their specific social, economic and environmental objectives. Economic and environmental efficiency have recently become relevant targets of most of these policies, whose sound implementation can be enhanced by monitoring farm performance from a multidimensional perspective. This paper proposes farm-level technical and environmental efficiency measures that recognize the stochastic conditions in which production takes place. A state-contingent framework is used to model production uncertainty. An implementable representation of the technology is developed using data envelopment analysis. The application focuses on a sample of Catalan arable crop farms. Results suggest that technical efficiency is slightly lower in bad than in good growing conditions. Nitrogen pollution can decrease substantially more under good than bad growing conditions.

Suggested Citation

  • Serra, Teresa & Chambers, Robert G. & Oude Lansink, Alfons, 2014. "Measuring technical and environmental efficiency in a state-contingent technology," European Journal of Operational Research, Elsevier, vol. 236(2), pages 706-717.
  • Handle: RePEc:eee:ejores:v:236:y:2014:i:2:p:706-717
    DOI: 10.1016/j.ejor.2013.12.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713010217
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher O’Donnell & Robert Chambers & John Quiggin, 2010. "Efficiency analysis in the presence of uncertainty," Journal of Productivity Analysis, Springer, vol. 33(1), pages 1-17, February.
    2. Chambers, Robert G., 2007. "AJAE Appendix: Valuing Agricultural Insurance," American Journal of Agricultural Economics Appendices, Agricultural and Applied Economics Association, vol. 89(3), August.
    3. Alfons Oude Lansink & Ky–sti Pietola, 2002. "Effciency and productivity of conventional and organic farms in Finland 1994--1997," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 29(1), pages 51-66, March.
    4. Banker, Rajiv D. & Chang, Hsihui, 2006. "The super-efficiency procedure for outlier identification, not for ranking efficient units," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1311-1320, December.
    5. C. J. O'Donnell & W. E. Griffiths, 2006. "Estimating State-Contingent Production Frontiers," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(1), pages 249-266.
    6. Robert Chambers & Teresa Serra & Spiro Stefanou, 2015. "Using ex ante output elicitation to model state-contingent technologies," Journal of Productivity Analysis, Springer, vol. 43(1), pages 75-83, February.
    7. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    8. Ada Wossink & Zulal Sogutlu Denaux, 2007. "Efficiency and innovation offsets in non-point source pollution control and the role of education," International Journal of Agricultural Resources, Governance and Ecology, Inderscience Enterprises Ltd, vol. 6(1), pages 79-95.
    9. Sipilainen, Timo & Oude Lansink, Alfons G.J.M., 2005. "Learning in Organic Farming An Application on Finnish Dairy Farms," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24493, European Association of Agricultural Economists.
    10. J. Cummins & Hongmin Zi, 1998. "Comparison of Frontier Efficiency Methods: An Application to the U.S. Life Insurance Industry," Journal of Productivity Analysis, Springer, vol. 10(2), pages 131-152, October.
    11. Robert G. Chambers & John Quiggin, 1998. "Cost Functions and Duality for Stochastic Technologies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(2), pages 288-295.
    12. Pethig, Rudiger, 2006. "Non-linear production, abatement, pollution and materials balance reconsidered," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 185-204, March.
    13. Lohr, Luanne & Park, Timothy A., 2006. "Technical Efficiency of U. S. Organic Farmers: The Complementary Roles of Soil Management Techniques and Farm Experience," Agricultural and Resource Economics Review, Cambridge University Press, vol. 35(02), pages 327-338, October.
    14. Reinhard, Stijn & Knox Lovell, C. A. & Thijssen, Geert J., 2000. "Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA," European Journal of Operational Research, Elsevier, vol. 121(2), pages 287-303, March.
    15. Jean-Paul Chavas, 2008. "A Cost Approach to Economic Analysis Under State-Contingent Production Uncertainty," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(2), pages 435-466.
    16. H. Fried & C. Lovell & S. Schmidt & S. Yaisawarng, 2002. "Accounting for Environmental Effects and Statistical Noise in Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 17(1), pages 157-174, January.
    17. Robert G. Chambers, 2007. "Valuing Agricultural Insurance," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(3), pages 596-606.
    18. Chambers,Robert G. & Quiggin,John, 2000. "Uncertainty, Production, Choice, and Agency," Cambridge Books, Cambridge University Press, number 9780521622448, April.
    19. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    20. Lansink, Alfons Oude, 2003. "Technical efficiency and CO2 abatement policies in the Dutch glasshouse industry," Agricultural Economics, Blackwell, vol. 28(2), pages 99-108, March.
    21. Stijn Reinhard & C.A. Knox Lovell & Geert Thijssen, 1999. "Econometric Estimation of Technical and Environmental Efficiency: An Application to Dutch Dairy Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 44-60.
    22. Tzouvelekas, Vangelis & Pantzios, Christos J. & Fotopoulos, Christos, 2001. "Technical efficiency of alternative farming systems: the case of Greek organic and conventional olive-growing farms," Food Policy, Elsevier, vol. 26(6), pages 549-569, December.
    23. Fare, Rolf & Knox Lovell, C. A., 1978. "Measuring the technical efficiency of production," Journal of Economic Theory, Elsevier, vol. 19(1), pages 150-162, October.
    24. Forsund, Finn R., 2009. "Good Modelling of Bad Outputs: Pollution and Multiple-Output Production," International Review of Environmental and Resource Economics, now publishers, vol. 3(1), pages 1-38, August.
    25. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    26. Alfons Oude Lansink & Arno van der Vlist, 2008. "Non-Parametric Modelling of CO," Journal of Agricultural Economics, Wiley Blackwell, vol. 59(3), pages 487-497, September.
    27. Fare, Rolf, et al, 1993. "Derivation of Shadow Prices for Undesirable Outputs: A Distance Function Approach," The Review of Economics and Statistics, MIT Press, vol. 75(2), pages 374-380, May.
    28. Tim Coelli & Ludwig Lauwers & Guido Huylenbroeck, 2007. "Environmental efficiency measurement and the materials balance condition," Journal of Productivity Analysis, Springer, vol. 28(1), pages 3-12, October.
    29. Isabelle Piot-Lepetit & Dominique Vermersch, 1998. "Pricing Organic Nitrogen Under The Weak Disposability Assumption: An Application to the French Pig Sector," Journal of Agricultural Economics, Wiley Blackwell, vol. 49(1), pages 85-99.
    30. Tzouvelekas, Vangelis & Pantzios, Christos J. & Fotopoulos, Christos, 2002. "Empirical Evidence of Technical Efficiency Levels in Greek Organic and Conventional Farms," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 3(2), August.
    31. Bellini, Tiziano, 2012. "Forward search outlier detection in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 216(1), pages 200-207.
    32. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:transe:v:104:y:2017:i:c:p:52-68 is not listed on IDEAS
    2. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    3. Serra, Teresa & Oude Lansink, Alfons, 2014. "Measuring the impacts of production risk on technical efficiency: A state-contingent conditional order-m approach," European Journal of Operational Research, Elsevier, vol. 239(1), pages 237-242.
    4. Sushama Murty & R. Robert Russell, "undated". "Modeling emission-generating technologies: Reconciliation of axiomatic and by-production approaches," Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi Discussion Papers 16-01, Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi, India.
    5. Yin, Pengzhen & Sun, Jiasen & Chu, Junfei & Liang, Liang, 2016. "Evaluating the environmental efficiency of a two-stage system with undesired outputs by a DEA approach: An interest preference perspectiveAuthor-Name: Wu, Jie," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1047-1062.
    6. Alfons Oude Lansink & Alan Wall, 2014. "Frontier models for evaluating environmental efficiency: an overview," Economics and Business Letters, Oviedo University Press, vol. 3(1), pages 43-50.
    7. K Hervé Dakpo & Philippe Jeanneaux & Laure Latruffe, 2014. "Inclusion of undesirable outputs in production technology modeling:The case of greenhouse gas emissions in French meat sheep farming," Working Papers SMART - LERECO 14-08, INRA UMR SMART-LERECO.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:236:y:2014:i:2:p:706-717. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.