IDEAS home Printed from https://ideas.repec.org/a/ags/frraes/188222.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

The choice of emission indicators in environmental policy design: an analysis of GHG abatement in different dairy farms based on a bio-economic model approach

Author

Listed:
  • Lengers, Bernd
  • Britz, Wolfgang

Abstract

The application of economic instruments to GHG emissions from dairy farms needs to rely on GHG indicators as actual emissions are impossible or extremely costly to measure. The choice of indicator impacts chosen abatement options, related costs and GHG actually emitted. A tool to quantify these relations is proposed which at its core consists of a highly detailed, mixed-integer dynamic programming model template able to cover a wide range of dairy farm characteristics and promising indicators. It allows deriving and comparing marginal abatement costs of GHGs emission for different farm types and indicators, informing the policy process about promising indicators, abatement strategies and related abatement and measurement costs.

Suggested Citation

  • Lengers, Bernd & Britz, Wolfgang, 2012. "The choice of emission indicators in environmental policy design: an analysis of GHG abatement in different dairy farms based on a bio-economic model approach," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 93(2).
  • Handle: RePEc:ags:frraes:188222
    DOI: 10.22004/ag.econ.188222
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/188222/files/93%20_2__%20117-144.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.188222?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Osterburg, Bernhard & Nieberg, Hiltrud & Ruter, Sebastian & Isermeyer, Folkhard & Haenel, Hans-Dieter & Hahne, Jochen & Krentler, Jan-Gerd & Paulsen, Hans Marten & Schuchardt, Frank & Schweinle, Jorg , 2009. "Erfassung, Bewertung und Minderung von Treibhausgasemissionen des deutschen Agrar- und Ernährungssektors," Thünen Working Paper 103666, Johann Heinrich von Thünen-Institut (vTI), Federal Research Institute for Rural Areas, Forestry and Fisheries.
    2. Stéphane Cara & Martin Houzé & Pierre-Alain Jayet, 2005. "Methane and Nitrous Oxide Emissions from Agriculture in the EU: A Spatial Assessment of Sources and Abatement Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 32(4), pages 551-583, December.
    3. Osterburg, Bernhard & Nieberg, Hiltrud & Röder, Norbert & Isermeyer, Folkhard & Haenel, Hans-Dieter & Hahne, Jochen & Krentler, Jan-Gerd & Paulsen, Hans Marten & Schuchardt, Frank & Schweinle, Jörg & , 2009. "Erfassung, Bewertung und Minderung von Treibhausgasemissionen des deutschen Agrar- und Ernährungssektors: Studie im Auftrag des Bundesministeriums für Ernährung, Landwirtschaft und Verbraucherschutz," Arbeitsberichte aus der vTI-Agrarökonomie 03/2009, Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries.
    4. S De Cara & P-A Jayet, 2000. "Emissions of greenhouse gases from agriculture: the heterogeneity of abatement costs in France," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 27(3), pages 281-303, September.
    5. Kennedy, John O. S., 1988. "Principles of dynamic optimization in resource management," Agricultural Economics, Blackwell, vol. 2(1), pages 57-72, June.
    6. Breen, James P., 2008. "Simulating a Market for Tradable Greenhouse Gas Emissions Permits amongst Irish Farmers," 82nd Annual Conference, March 31 - April 2, 2008, Royal Agricultural College, Cirencester, UK 36770, Agricultural Economics Society.
    7. Huirne, R. B. M. & Dijkhuizen, A. A. & van Beek, P. & Hendriks, Th. H. B., 1993. "Stochastic dynamic programming to support sow replacement decisions," European Journal of Operational Research, Elsevier, vol. 67(2), pages 161-171, June.
    8. Dominguez, Ignacio Perez & Britz, Wolfgang, 2010. "Greenhouse Gas Emission Trading In European Agriculture: A Comparison Of Different Policy Implementation Options In Year 2020," 2010: Climate Change in World Agriculture: Mitigation, Adaptation, Trade and Food Security, June 2010, Stuttgart-Hohenheim, Germany 91396, International Agricultural Trade Research Consortium.
    9. Sophie Durandeau & Benoit Gabrielle & Caroline Godard & Pierre-Alain Jayet & Christine Le Bas, 2010. "Coupling biophysical and micro-economic models to assess the effect of mitigation measures on greenhouse gas emissions from agriculture," Post-Print hal-00410001, HAL.
    10. de Cara, Stephane & Jayet, Pierre-Alain, 2001. "Agriculture And Climate Change In The Eu: Greenhouse Gas Emissions And Abatement Costs," 2001 Annual meeting, August 5-8, Chicago, IL 20577, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    11. Vermont, Bruno & De Cara, Stéphane, 2010. "How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture?: A meta-analysis," Ecological Economics, Elsevier, vol. 69(7), pages 1373-1386, May.
    12. Perez Dominguez, Ignacio & Holm-Muller, Karin, 2007. "Opt-in of the agricultural sector to the European trading scheme for greenhouse gas emissions – a proposal and its possible effects," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 56(08), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tzemi, Domna & Breen, James, 2019. "Reducing greenhouse gas emissions through the use of urease inhibitors: A farm level analysis," Ecological Modelling, Elsevier, vol. 394(C), pages 18-26.
    2. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.
    3. Kahil, Mohamed Taher & Albiac, José, 2013. "Greenhouse gases mitigation policies in the agriculture of Aragon, Spain," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 2(1), pages 1-24, April.
    4. Carpentier, Alain & Gohin, Alexandre & Sckokai, Paolo & Thomas, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Revue d'Etudes en Agriculture et Environnement, Editions NecPlus, vol. 96(01), pages 131-165, March.
    5. Sanna Lötjönen & Esa Temmes & Markku Ollikainen, 2020. "Dairy Farm Management when Nutrient Runoff and Climate Emissions Count," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 960-981, May.
    6. Remble, Amber & Britz, Wolfgang & Keeney, Roman, 2013. "Farm Level Tradeoffs in the Regulation of Greenhouse Gas Emissions," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150442, Agricultural and Applied Economics Association.
    7. Garbert, Johanna & Holm-Mueller, Karin, 2015. "Impacts of policies to implement the EU Water Framework Directive on development strategies and income of typical pig farms in an intensively farmed region of Germany," Discussion Papers 206384, University of Bonn, Institute for Food and Resource Economics.
    8. Lengers, Bernd & Britz, Wolfgang & Holm-Müller, Karin, 2013. "Trade-off of feasibility against accuracy and cost efficiency in choosing indicators for the abatement of GHG-emissions in dairy farming," Discussion Papers 162877, University of Bonn, Institute for Food and Resource Economics.
    9. Britz, Wolfgang, 2014. "A New Graphical User Interface Generator for Economic Models and its Comparison to Existing Approaches," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 63(04), pages 1-15, December.
    10. Britz, Wolfgang, 2014. "A New Graphical User Interface Generator for Economic Models and its Comparison to Existing Approaches," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 63(4).
    11. Eory, Vera, 2015. "Evaluating the use of marginal abatement cost curves applied to greenhouse gas abatement in agriculture," Working Papers 199777, Scotland's Rural College (formerly Scottish Agricultural College), Land Economy & Environment Research Group.
    12. Britz, Wolfgang & Pérez-Dominguez, Ignacio & Narayanan, Gopalakrishnan Badri, 2015. "Analyzing Results from Agricultural Large-scale Economic Simulation Models: Recent Progress and the Way Ahead," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 64(02), June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lengers, Bernd & Britz, Wolfgang & Holm-Müller, Karin, 2013. "Trade-off of feasibility against accuracy and cost efficiency in choosing indicators for the abatement of GHG-emissions in dairy farming," Discussion Papers 162877, University of Bonn, Institute for Food and Resource Economics.
    2. Henseler, Martin & Dechow, Rene, 2014. "Simulation of regional nitrous oxide emissions from German agricultural mineral soils: A linkage between an agro-economic model and an empirical emission model," Agricultural Systems, Elsevier, vol. 124(C), pages 70-82.
    3. Huber, Robert & Tarruella, Marta & Schäfer, David & Finger, Robert, 2023. "Marginal climate change abatement costs in Swiss dairy production considering farm heterogeneity and interaction effects," Agricultural Systems, Elsevier, vol. 207(C).
    4. Pierre-Alain Jayet & Athanasios Petsakos & Raja Chakir & Anna Lungarska & Stéphane De Cara & Elvire Petel & Pierre Humblot & Caroline Godard & David Leclère & Pierre Cantelaube & Cyril Bourgeois & Mél, 2023. "The European agro-economic model AROPAj," Working Papers hal-04109872, HAL.
    5. Laure Bamière & Pierre‐Alain Jayet & Salomé Kahindo & Elsa Martin, 2021. "Carbon sequestration in French agricultural soils: A spatial economic evaluation," Agricultural Economics, International Association of Agricultural Economists, vol. 52(2), pages 301-316, March.
    6. Lungarska, Anna & Chakir, Raja, 2018. "Climate-induced Land Use Change in France: Impacts of Agricultural Adaptation and Climate Change Mitigation," Ecological Economics, Elsevier, vol. 147(C), pages 134-154.
    7. Eory, Vera, 2015. "Evaluating the use of marginal abatement cost curves applied to greenhouse gas abatement in agriculture," Working Papers 199777, Scotland's Rural College (formerly Scottish Agricultural College), Land Economy & Environment Research Group.
    8. Vermont, Bruno & De Cara, Stéphane, 2010. "How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture?: A meta-analysis," Ecological Economics, Elsevier, vol. 69(7), pages 1373-1386, May.
    9. Breen, James P. & Donnellan, Trevor & Westhoff, Patrick C., 2012. "Reducing Greenhouse Gas Emissions from Irish Agriculture: A market-based approach," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 130555, International Association of Agricultural Economists.
    10. Garnache, Cloe & Merel, Pierre R., 2012. "Carbon market policy design: Investigating the role of payments aggregation," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124960, Agricultural and Applied Economics Association.
    11. Garnache, Cloé & Mérel, Pierre R. & Lee, Juhwan & Six, Johan, 2017. "The social costs of second-best policies: Evidence from agricultural GHG mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 39-73.
    12. Stephane de Cara & Bruno Vermont, 2014. "Atténuation de l’effet de serre d’origine agricole : efficacité en coûts et instruments de régulation," Post-Print hal-01173041, HAL.
    13. Parisa Aghajanzadeh-Darzi & Pierre-Alain Jayet & Athanasios Petsakos, 2017. "Improvement of a Bio-Economic Mathematical Programming Model in the Case of On-Farm Source Inputs and Outputs," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 15(3), pages 489-508, September.
    14. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    15. De Cara, Stéphane & Jayet, Pierre-Alain, 2011. "Marginal abatement costs of greenhouse gas emissions from European agriculture, cost effectiveness, and the EU non-ETS burden sharing agreement," Ecological Economics, Elsevier, vol. 70(9), pages 1680-1690, July.
    16. Povellato, Andrea & Bosello, Francesco & Giupponi, Carlo, 2007. "A Review of Recent Studies on Cost Effectiveness of GHG Mitigation Measures in the European Agro-Forestry Sector," Natural Resources Management Working Papers 10268, Fondazione Eni Enrico Mattei (FEEM).
    17. de Cara, Stephane & Rozakis, Stelios, 2004. "Carbon sequestration through the planting of multi-annual energy crops: A dynamic and spatial assessment," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 5(1), pages 1-17, January.
    18. Kemal Sarica & İlkay Dellal & Esin Tetik Kollugil & Erdinc Ersoy, 2023. "GHG Emission Mitigation of Turkish Agriculture Sector: Potential and Cost Assessment," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(7), pages 1-22, October.
    19. Wang, Wen, 2015. "Intégrer l'agriculture dans les politiques d'atténuation chinoises," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/14999 edited by Perthuis, Christian de.
    20. Amy W. Ando & Shibashis Mukherjee, 2012. "Benefits of pollution monitoring technology for greenhouse gas offset markets," Economics Bulletin, AccessEcon, vol. 32(1), pages 122-136.

    More about this item

    Keywords

    Environmental Economics and Policy; Livestock Production/Industries;

    JEL classification:

    • D01 - Microeconomics - - General - - - Microeconomic Behavior: Underlying Principles
    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets
    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:frraes:188222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/inrapfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.