Advanced Search
MyIDEAS: Login to save this paper or follow this series

Pooling versus model selection for nowcasting with many predictors: an application to German GDP

Contents:

Author Info

  • Kuzin, Vladimir N.
  • Marcellino, Massimiliano
  • Schumacher, Christian

Abstract

This paper discusses pooling versus model selection for now- and forecasting in the presence of model uncertainty with large, unbalanced datasets. Empirically, unbalanced data is pervasive in economics and typically due to di¤erent sampling frequencies and publication delays. Two model classes suited in this context are factor models based on large datasets and mixed-data sampling (MIDAS) regressions with few predictors. The specification of these models requires several choices related to, amongst others, the factor estimation method and the number of factors, lag length and indicator selection. Thus, there are many sources of mis-specification when selecting a particular model, and an alternative could be pooling over a large set of models with different specifications. We evaluate the relative performance of pooling and model selection for now- and forecasting quarterly German GDP, a key macroeconomic indicator for the largest country in the euro area, with a large set of about one hundred monthly indicators. Our empirical findings provide strong support for pooling over many specifications rather than selecting a specific model. --

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://econstor.eu/bitstream/10419/27657/1/200903dkp.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Deutsche Bundesbank, Research Centre in its series Discussion Paper Series 1: Economic Studies with number 2009,03.

as in new window
Length:
Date of creation: 2009
Date of revision:
Handle: RePEc:zbw:bubdp1:7572

Contact details of provider:
Postal: Postfach 10 06 02, 60006 Frankfurt
Phone: 0 69 / 95 66 - 34 55
Fax: 0 69 / 95 66 30 77
Email:
Web page: http://www.bundesbank.de/
More information through EDIRC

Related research

Keywords: casting; forecast combination; forecast pooling; model selection; mixed - frequency data; factor models; MIDAS;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Antonello D'Agostino & Domenico Giannone & Paolo Surico, 2005. "(Un)Predictability and Macroeconomic Stability," Macroeconomics 0510024, EconWPA.
  2. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2003. "Leading Indicators for Euro Area Inflation and GDP Growth," CEPR Discussion Papers 3893, C.E.P.R. Discussion Papers.
  3. Marc Hallin & Mario Forni & Marco Lippi & Lucrezia Reichlin, 2003. "Do financial variables help forecasting inflation and real activity in the Euro area ?," ULB Institutional Repository 2013/2123, ULB -- Universite Libre de Bruxelles.
  4. Schumacher, Christian, 2005. "Forecasting German GDP using alternative factor models based on large datasets," Discussion Paper Series 1: Economic Studies 2005,24, Deutsche Bundesbank, Research Centre.
  5. Barhoumi, K. & Rünstler, G. & Cristadoro, R. & Den Reijer, A. & Jakaitiene, A. & Jelonek, P. & Rua, A. & Ruth, K. & Benk, S. & Van Nieuwenhuyze, C., 2008. "Short-term forecasting of GDP using large monthly datasets: a pseudo real-time forecast evaluation exercise," Working papers 215, Banque de France.
  6. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
  7. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  8. Ralf Brueggemann & Helmut Luetkepohl, 2004. "A Small Monetary System for the Euro Area Based on German Data," Economics Working Papers ECO2004/24, European University Institute.
  9. Campbell, Sean D., 2007. "Macroeconomic Volatility, Predictability, and Uncertainty in the Great Moderation: Evidence From the Survey of Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 191-200, April.
  10. Kapetanios, George & Labhard, Vincent & Price, Simon, 2008. "Forecast combination and the Bank of England's suite of statistical forecasting models," Economic Modelling, Elsevier, vol. 25(4), pages 772-792, July.
  11. Katrin Assenmacher-Wesche & M. Hashem Pesaran, 2008. "Forecasting the Swiss Economy Using Vecx* Models: an Exercise in Forecast Combination Across Models and Observation Windows," National Institute Economic Review, National Institute of Economic and Social Research, vol. 203(1), pages 91-108, January.
  12. Antonello D’ Agostino & Domenico Giannone, 2012. "Comparing Alternative Predictors Based on Large‐Panel Factor Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(2), pages 306-326, 04.
  13. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010. "New Eurocoin: Tracking Economic Growth in Real Time," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1024-1034, November.
  14. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
  15. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2005. "The generalised dynamic factor model: one sided estimation and forecasting," ULB Institutional Repository 2013/10129, ULB -- Universite Libre de Bruxelles.
  16. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2007. "A Two-Step Estimator for Large Approximate Dynamic Factor Models Based on Kalman Filtering," CEPR Discussion Papers 6043, C.E.P.R. Discussion Papers.
  17. Bańbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346.
  18. Martin Schneider & Martin Spitzer, 2004. "Forecasting Austrian GDP using the generalized dynamic factor model," Working Papers 89, Oesterreichische Nationalbank (Austrian Central Bank).
  19. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
  20. Breitung, Jörg & Eickmeier, Sandra, 2005. "Dynamic factor models," Discussion Paper Series 1: Economic Studies 2005,38, Deutsche Bundesbank, Research Centre.
  21. Stock, James H. & Watson, Mark W., 2006. "Forecasting with Many Predictors," Handbook of Economic Forecasting, Elsevier.
  22. Inoue, Atsushi & Kilian, Lutz, 2006. "On the selection of forecasting models," Journal of Econometrics, Elsevier, vol. 130(2), pages 273-306, February.
  23. Chevillon, Guillaume & Hendry, David F., 2005. "Non-parametric direct multi-step estimation for forecasting economic processes," International Journal of Forecasting, Elsevier, vol. 21(2), pages 201-218.
  24. Todd E. Clark & Michael W. McCracken, 2008. "Averaging forecasts from VARs with uncertain instabilities," Working Papers 2008-030, Federal Reserve Bank of St. Louis.
  25. Domenico Giannone & Lucrezia Reichlin & David Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
  26. Boivin, Jean & Ng, Serena, 2005. "Understanding and Comparing Factor-Based Forecasts," MPRA Paper 836, University Library of Munich, Germany.
  27. Marcellino, Massimiliano & Schumacher, Christian, 2007. "Factor-MIDAS for now- and forecasting with ragged-edge data: a model comparison for German GDP," Discussion Paper Series 1: Economic Studies 2007,34, Deutsche Bundesbank, Research Centre.
  28. Lucrezia Reichlin & Domenico Giannone & Luca Sala, . "Monetary policy in real time," ULB Institutional Repository 2013/10177, ULB -- Universite Libre de Bruxelles.
    • Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," NBER Chapters, in: NBER Macroeconomics Annual 2004, Volume 19, pages 161-224 National Bureau of Economic Research, Inc.
  29. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2008. "Forecasting Macroeconomic Variables Using Diffusion Indexes in Short Samples with Structural Change," Economics Working Papers ECO2008/17, European University Institute.
  30. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, 06.
  31. Banerjee, Anindya & Marcellino, Massimiliano, 2006. "Are there any reliable leading indicators for US inflation and GDP growth?," International Journal of Forecasting, Elsevier, vol. 22(1), pages 137-151.
  32. Anthony Garratt & Gary Koop & Emi Mise & Shaun P Vahey, 2007. "Real-time Prediction with UK Monetary Aggregates in the Presence of Model Uncertainty," Birkbeck Working Papers in Economics and Finance 0714, Birkbeck, Department of Economics, Mathematics & Statistics.
  33. Marcellino, Massimiliano & Stock, James H & Watson, Mark W, 2005. "A Comparison of Direct and Iterated Multistep AR Methods for Forecasting Macroeconomic Time Series," CEPR Discussion Papers 4976, C.E.P.R. Discussion Papers.
  34. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
  35. Massimiliano Marcellino & James H. Stock & Mark W. Watson, . "Macroeconomic Forecasting in the Euro Area: Country Specific versus Area-Wide Information," Working Papers 201, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  36. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
  37. George Kapetanios & Massimiliano Marcellino, 2009. "A parametric estimation method for dynamic factor models of large dimensions," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 208-238, 03.
  38. Christine De Mol & Domenico Giannone & Lucrezia Reichlin, 2008. "Forecasting using a large number of predictors: is Bayesian shrinkage a valid alternative to principal components?," ULB Institutional Repository 2013/6411, ULB -- Universite Libre de Bruxelles.
  39. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
  40. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  41. Michael P. Clements & Ana Beatriz Galvao, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
  42. Domenico Giannone & Lucrezia Reichlin & David Small, 2008. "Nowcasting: the real time informational content of macroeconomic data releases," ULB Institutional Repository 2013/6409, ULB -- Universite Libre de Bruxelles.
  43. Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
  44. Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
  45. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Robert Lehmann & Klaus Wohlrabe, 2012. "Forecasting GDP at the Regional Level with Many Predictors," CESifo Working Paper Series 3956, CESifo Group Munich.
  2. Kai Carstensen & Steffen Henzel & Johannes Mayr & Klaus Wohlrabe, 2009. "IFOCAST: Methoden der ifo-Kurzfristprognose," Ifo Schnelldienst, Ifo Institute for Economic Research at the University of Munich, vol. 62(23), pages 15-28, December.
  3. Claudia FORONI & Massimiliano MARCELLINO, 2012. "A Comparison of Mixed Frequency Approaches for Modelling Euro Area Macroeconomic Variables," Economics Working Papers ECO2012/07, European University Institute.
  4. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
  5. Katja Drechsel & Rolf Scheufele, 2010. "Should We Trust in Leading Indicators? Evidence from the Recent Recession," IWH Discussion Papers 10, Halle Institute for Economic Research.
  6. Boriss Siliverstovs & Konstantin A. Kholodilin, 2010. "Assessing the Real-Time Informational Content of Macroeconomic Data Releases for Now-/Forecasting GDP: Evidence for Switzerland," Discussion Papers of DIW Berlin 970, DIW Berlin, German Institute for Economic Research.
  7. Klaus Wohlrabe, 2009. "Makroökonomische Prognosen mit gemischten Frequenzen," Ifo Schnelldienst, Ifo Institute for Economic Research at the University of Munich, vol. 62(21), pages 22-33, November.
  8. Michele Lenza & Thomas Warmedinger, 2011. "A Factor Model for Euro-area Short-term Inflation Analysis," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), Justus-Liebig University Giessen, Department of Statistics and Economics, vol. 231(1), pages 50-62, February.
  9. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Paper 1227, Federal Reserve Bank of Cleveland.
  10. Christian Schumacher, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), Justus-Liebig University Giessen, Department of Statistics and Economics, vol. 231(1), pages 28-49, February.
  11. Drechsel, Katja & Scheufele, Rolf, 2012. "The performance of short-term forecasts of the German economy before and during the 2008/2009 recession," International Journal of Forecasting, Elsevier, vol. 28(2), pages 428-445.
  12. Marcus Scheiblecker, 2010. "Can the Inclusion of Calendar and Temperature Effects Improve Nowcasts and Forecasts of Construction Sector Output Based on Business Surveys?," WIFO Working Papers 374, WIFO.
  13. Kuzin, Vladimir N. & Marcellino, Massimiliano & Schumacher, Christian, 2009. "MIDAS versus mixed-frequency VAR: nowcasting GDP in the euro area," Discussion Paper Series 1: Economic Studies 2009,07, Deutsche Bundesbank, Research Centre.
  14. Bušs, Ginters, 2009. "Comparing forecasts of Latvia's GDP using simple seasonal ARIMA models and direct versus indirect approach," MPRA Paper 16684, University Library of Munich, Germany.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:zbw:bubdp1:7572. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.