Advanced Search
MyIDEAS: Login

Forecasting German GDP using alternative factor models based on large datasets

Contents:

Author Info

  • Christian Schumacher

    (Deutsche Bundesbank, Frankfurt am Main, Germany)

Abstract

This paper discusses the forecasting performance of alternative factor models based on a large panel of quarterly time series for the German economy. One model extracts factors by static principal components analysis; the second model is based on dynamic principal components obtained using frequency domain methods; the third model is based on subspace algorithms for state-space models. Out-of-sample forecasts show that the forecast errors of the factor models are on average smaller than the errors of a simple autoregressive benchmark model. Among the factor models, the dynamic principal component model and the subspace factor model outperform the static factor model in most cases in terms of mean-squared forecast error. However, the forecast performance depends crucially on the choice of appropriate information criteria for the auxiliary parameters of the models. In the case of misspecification, rankings of forecast performance can change severely.  Copyright © 2007 John Wiley & Sons, Ltd.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1002/for.1026
File Function: Link to full text; subscription required
Download Restriction: no

Bibliographic Info

Article provided by John Wiley & Sons, Ltd. in its journal Journal of Forecasting.

Volume (Year): 26 (2007)
Issue (Month): 4 ()
Pages: 271-302

as in new window
Handle: RePEc:jof:jforec:v:26:y:2007:i:4:p:271-302

Contact details of provider:
Web page: http://www3.interscience.wiley.com/cgi-bin/jhome/2966

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:26:y:2007:i:4:p:271-302. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.