IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v21y2005i01p181-211_05.html
   My bibliography  Save this article

Estimating Linear Dynamical Systems Using Subspace Methods

Author

Listed:
  • Bauer, Dietmar

Abstract

This paper provides a survey on a class of so-called subspace methods whose main proponent is CCA proposed by Larimore (1983, Proceedings of the 1983 American Control Conference 2). Because they are based on regressions these methods for the estimation of ARMAX systems are attractive as a result of their conceptual simplicity and their numerical advantages as compared to traditional estimators based on criterion optimization. Under the assumption of correct specification the methods provide consistent and asymptotically normal estimates for stationary ARMAX processes where the innovations may be conditionally heteroskedastic and the exogenous inputs are strictly stationary of sufficiently short memory. For stationary autoregressive moving average (ARMA) processes with independent and identically distributed (i.i.d.) Gaussian innovations the estimates are even asymptotically efficient. For I(1) ARMA processes the estimates of both the long-run and the short-run dynamics are consistent without using the knowledge that the data are integrated in the algorithm. Additionally the algorithms provide easily accessible information on the appropriateness of the chosen model complexity. The algorithms include a number of design parameters that have to be set by the user. These include the order of the estimated system. This paper collects up-to-date knowledge on the effects of these design parameters, leading to a number of suggested automated choices to obtain a fully automated estimation procedure.

Suggested Citation

  • Bauer, Dietmar, 2005. "Estimating Linear Dynamical Systems Using Subspace Methods," Econometric Theory, Cambridge University Press, vol. 21(1), pages 181-211, February.
  • Handle: RePEc:cup:etheor:v:21:y:2005:i:01:p:181-211_05
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466605050127/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alfredo García‐Hiernaux, 2011. "Forecasting linear dynamical systems using subspace methods," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(5), pages 462-468, September.
    2. Arvid Raknerud & Terje Skjerpen & Anders Rygh Swensen, 2010. "Forecasting key macroeconomic variables from a large number of predictors: a state space approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(4), pages 367-387.
    3. Bauer, Dietmar, 2009. "Estimating ARMAX systems for multivariate time series using the state approach to subspace algorithms," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 397-421, March.
    4. Kascha, Christian & Mertens, Karel, 2009. "Business cycle analysis and VARMA models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 267-282, February.
    5. Dias, Gustavo Fruet & Kapetanios, George, 2018. "Estimation and forecasting in vector autoregressive moving average models for rich datasets," Journal of Econometrics, Elsevier, vol. 202(1), pages 75-91.
    6. Bauer, Dietmar & Wagner, Martin, 2009. "Using subspace algorithm cointegration analysis: Simulation performance and application to the term structure," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1954-1973, April.
    7. Christian Kascha, 2012. "A Comparison of Estimation Methods for Vector Autoregressive Moving-Average Models," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 297-324.
    8. Alfredo García-Hiernaux & José Casals & Miguel Jerez, 2012. "Estimating the system order by subspace methods," Computational Statistics, Springer, vol. 27(3), pages 411-425, September.
    9. Poskitt, D.S., 2016. "Vector autoregressive moving average identification for macroeconomic modeling: A new methodology," Journal of Econometrics, Elsevier, vol. 192(2), pages 468-484.
    10. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:21:y:2005:i:01:p:181-211_05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.