Advanced Search
MyIDEAS: Login

Forecasting the US Real House Price Index: Structural and Non-Structural Models with and without Fundamentals

Contents:

Author Info

  • Rangan Gupta

    ()
    (Department of Economics, University of Pretoria)

  • Alan Kabundi

    ()
    (Department of Economics and Econometrics, University of Johannesburg)

  • Stephen M. Miller

    ()
    (Department of Economics, University of Nevada, Las Vegas)

Abstract

We employ a 10-variable dynamic structural general equilibrium model to forecast the US real house price index as well as its turning point in 2006:Q2. We also examine various Bayesian and classical time-series models in our forecasting exercise to compare to the dynamic stochastic general equilibrium model, estimated using Bayesian methods. In addition to standard vector-autoregressive and Bayesian vector autoregressive models, we also include the information content of either 10 or 120 quarterly series in some models to capture the influence of fundamentals. We consider two approaches for including information from large data sets – extracting common factors (principle components) in a Factor-Augmented Vector Autoregressive or Factor-Augmented Bayesian Vector Autoregressive models or Bayesian shrinkage in a large-scale Bayesian Vector Autoregressive models. We compare the out-of-sample forecast performance of the alternative models, using the average root mean squared error for the forecasts. We find that the small-scale Bayesian-shrinkage model (10 variables) outperforms the other models, including the large-scale Bayesian-shrinkage model (120 variables). Finally, we use each model to forecast the turning point in 2006:Q2, using the estimated model through 2005:Q2. Only the dynamic stochastic general equilibrium model actually forecasts a turning point with any accuracy, suggesting that attention to developing forward-looking microfounded dynamic stochastic general equilibrium models of the housing market, over and above fundamentals, proves crucial in forecasting turning points.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://web.unlv.edu/projects/RePEc/pdf/1001.pdf
File Function: First version, 2009
Download Restriction: no

Bibliographic Info

Paper provided by University of Nevada, Las Vegas , Department of Economics in its series Working Papers with number 1001.

as in new window
Length: 36 pages
Date of creation: Dec 2009
Date of revision:
Handle: RePEc:nlv:wpaper:1001

Contact details of provider:
Phone: (702) 895-3776
Fax: (702) 895-1354
Web page: http://business.unlv.edu/econ/
More information through EDIRC

Related research

Keywords: compensating variation; nonlinear income effects; discrete choice;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Mu-Chun Wang, 2009. "Comparing the DSGE model with the factor model: an out-of-sample forecasting experiment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 167-182.
  2. Boivin, Jean & Giannoni, Marc P. & Mihov, Ilian, 2006. "Sticky prices and monetary policy: Evidence from disaggregated US data," CFS Working Paper Series 2007/14, Center for Financial Studies (CFS).
  3. Rangan Gupta & Stephen M. Miller, 2009. "The Time-Series Properties of House Prices: A Case Study of the Southern California Market," Working Papers 0912, University of Nevada, Las Vegas , Department of Economics, revised Dec 2009.
  4. Chamberlain, Gary & Rothschild, Michael, 1982. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Scholarly Articles 3230355, Harvard University Department of Economics.
  5. Todd E. Clark & Michael W. McCracken, 1999. "Tests of equal forecast accuracy and encompassing for nested models," Research Working Paper 99-11, Federal Reserve Bank of Kansas City.
  6. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1983. "Forecasting and Conditional Projection Using Realistic Prior Distributions," NBER Working Papers 1202, National Bureau of Economic Research, Inc.
  7. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," NBER Working Papers 10220, National Bureau of Economic Research, Inc.
  8. Spencer, David E., 1993. "Developing a Bayesian vector autoregression forecasting model," International Journal of Forecasting, Elsevier, vol. 9(3), pages 407-421, November.
  9. Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009. "Using Large Data Sets to Forecast Housing Prices: A Case Study of Twenty US States," Working papers 2009-13, University of Connecticut, Department of Economics.
  10. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  11. Matteo Iacoviello & Stefano Neri, 2008. "Housing market spillovers : evidence from an estimated DSGE model," Working Paper Research 145, National Bank of Belgium.
  12. James H. Stock & Mark W. Watson, 1999. "Forecasting Inflation," NBER Working Papers 7023, National Bureau of Economic Research, Inc.
  13. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
  14. Martin Schneider & Martin Spitzer, 2004. "Forecasting Austrian GDP using the generalized dynamic factor model," Working Papers 89, Oesterreichische Nationalbank (Austrian Central Bank).
  15. Jean Boivin & Serena Ng, 2003. "Are More Data Always Better for Factor Analysis?," NBER Working Papers 9829, National Bureau of Economic Research, Inc.
  16. Rangan Gupta & Stephen M. Miller, 2009. "The Time-Series Properties of Housing Prices: A Case Study of the Southern California Market," Working Papers 200908, University of Pretoria, Department of Economics.
  17. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
  18. Jean Boivin & Serena Ng, 2005. "Understanding and Comparing Factor-Based Forecasts," International Journal of Central Banking, International Journal of Central Banking, vol. 1(3), December.
  19. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
  20. Domenico Giannone & Troy Matheson, 2006. "A new core inflation indicator for New Zealand," Reserve Bank of New Zealand Discussion Paper Series DP2006/02, Reserve Bank of New Zealand.
  21. Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2008. "Large Bayesian VARs," Working Papers ECARES 2008_033, ULB -- Universite Libre de Bruxelles.
  22. Topel, Robert H & Rosen, Sherwin, 1988. "Housing Investment in the United States," Journal of Political Economy, University of Chicago Press, vol. 96(4), pages 718-40, August.
  23. John M. Quigley, 1999. "Real Estate Prices and Economic Cycles," International Real Estate Review, Asian Real Estate Society, vol. 2(1), pages 1-20.
  24. Christine De Mol & Domenico Giannone & Lucrezia Reichlin, 2008. "Forecasting using a large number of predictors: is Bayesian shrinkage a valid alternative to principal components?," ULB Institutional Repository 2013/6411, ULB -- Universite Libre de Bruxelles.
  25. Dreger, Christian & Schumacher, Christian, 2002. "Estimating large-scale factor models for economic activity in Germany : do they outperform simpler models?," HWWA Discussion Papers 199, Hamburg Institute of International Economics (HWWA).
  26. Sonali Das & Rangan Gupta & Alain Kabundi, 2009. "Could we have predicted the recent downturn in the South African Housing Market?," Working Papers 149, Economic Research Southern Africa.
  27. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2003. "Leading Indicators for Euro Area Inflation and GDP Growth," CEPR Discussion Papers 3893, C.E.P.R. Discussion Papers.
  28. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2003. "The Generalized Dynamic Factor Model. One-Sided Estimation and Forecasting," LEM Papers Series 2003/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  29. Ben S. Bernanke & Mark Gertler, 1995. "Inside the Black Box: The Credit Channel of Monetary Policy Transmission," Journal of Economic Perspectives, American Economic Association, vol. 9(4), pages 27-48, Fall.
  30. Chris Bloor & Troy Matheson, 2010. "Analysing shock transmission in a data-rich environment: a large BVAR for New Zealand," Empirical Economics, Springer, vol. 39(2), pages 537-558, October.
  31. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
  32. Elena Angelini & Jérôme Henry & Ricardo Mestre, 2001. "Diffusion index-based inflation forecasts for the euro area," BIS Papers chapters, in: Bank for International Settlements (ed.), Empirical studies of structural changes and inflation, volume 3, pages 109-138 Bank for International Settlements.
  33. Gupta, Rangan & Kabundi, Alain, 2011. "A large factor model for forecasting macroeconomic variables in South Africa," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1076-1088, October.
  34. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
  35. Sonali Das & Rangan Gupta & Alain Kabundi, 2011. "Forecasting regional house price inflation: a comparison between dynamic factor models and vector autoregressive models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(2), pages 288-302, March.
  36. Rangan Gupta & Moses m. Sichei, 2006. "A Bvar Model For The South African Economy," South African Journal of Economics, Economic Society of South Africa, vol. 74(3), pages 391-409, 09.
  37. Geraint Johnes & Thomas Hyclak, . "House Prices and Regional Labor Markets," Working Papers ec15/93, Department of Economics, University of Lancaster.
  38. Rangan Gupta, 2006. "Forecasting the South African Economy with VARs and VECMs," Working Papers 200618, University of Pretoria, Department of Economics.
  39. Rangan Gupta & Sonali Das, 2008. "Predicting Downturns in the US Housing Market: A Bayesian Approach," Working Papers 200821, University of Pretoria, Department of Economics.
  40. Dua, Pami & Miller, Stephen M & Smyth, David J, 1999. "Using Leading Indicators to Forecast U.S. Home Sales in a Bayesian Vector Autoregressive Framework," The Journal of Real Estate Finance and Economics, Springer, vol. 18(2), pages 191-205, March.
  41. Marc Hallin & Mario Forni & Marco Lippi & Lucrezia Reichlin, 2003. "Do financial variables help forecasting inflation and real activity in the Euro area ?," ULB Institutional Repository 2013/2123, ULB -- Universite Libre de Bruxelles.
  42. Rangan Gupta & Stephen M. Miller, 2009. "“Ripple Effects” and Forecasting Home Prices In Los Angeles, Las Vegas, and Phoenix," Working Papers 200901, University of Pretoria, Department of Economics.
  43. Richard M. Todd, 1984. "Improving economic forecasting with Bayesian vector autoregression," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Fall.
  44. George Kapetanios & Massimiliano Marcellino, 2009. "A parametric estimation method for dynamic factor models of large dimensions," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 208-238, 03.
  45. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
  46. Robert B. Barsky & Christopher L. House & Miles S. Kimball, 2007. "Sticky-Price Models and Durable Goods," American Economic Review, American Economic Association, vol. 97(3), pages 984-998, June.
  47. Riccardo Cristadoro & Mario Forni & Lucrezia Reichlin & Lucrezia Reichlin & Giovanni Veronese, 2005. "A core inflation indicator for the Euro area," ULB Institutional Repository 2013/10131, ULB -- Universite Libre de Bruxelles.
  48. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409 National Bureau of Economic Research, Inc.
  49. Rangan Gupta & Sonali Das, 2008. "Spatial Bayesian Methods Of Forecasting House Prices In Six Metropolitan Areas Of South Africa," South African Journal of Economics, Economic Society of South Africa, vol. 76(2), pages 298-313, 06.
  50. ZELLNER, Arnold & PALM, Franz, . "Time series analysis and simultaneous equation econometric models," CORE Discussion Papers RP -173, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  51. Zellner, Arnold, 1986. "A tale of forecasting 1001 series : The Bayesian knight strikes again," International Journal of Forecasting, Elsevier, vol. 2(4), pages 491-494.
  52. Alain N. Kabundi, 2004. "Estimation of Economic Growth in France Using Business Survey Data," IMF Working Papers 04/69, International Monetary Fund.
  53. Rapach, David E. & Strauss, Jack K., 2009. "Differences in housing price forecastability across US states," International Journal of Forecasting, Elsevier, vol. 25(2), pages 351-372.
  54. Dua, Pami & Miller, Stephen M, 1996. "Forecasting Connecticut Home Sales in a BVAR Framework Using Coincident and Leading Indexes," The Journal of Real Estate Finance and Economics, Springer, vol. 13(3), pages 219-35, November.
  55. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  56. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  57. Marc-André Gosselin & Greg Tkacz, 2001. "Evaluating Factor Models: An Application to Forecasting Inflation in Canada," Working Papers 01-18, Bank of Canada.
  58. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
  59. Chamberlain, Gary, 1983. "Funds, Factors, and Diversification in Arbitrage Pricing Models," Econometrica, Econometric Society, vol. 51(5), pages 1305-23, September.
  60. Rangan Gupta & Alain Kabundi, 2009. "Forecasting Real Us House Price: Principal Components Versus Bayesian Regressions," Working Papers 200907, University of Pretoria, Department of Economics.
  61. Forni, Mario, et al, 2001. "Coincident and Leading Indicators for the Euro Area," Economic Journal, Royal Economic Society, vol. 111(471), pages C62-85, May.
  62. Thomas Hyclak & Geraint Johnes, 1999. "original: House prices and regional labor markets," The Annals of Regional Science, Springer, vol. 33(1), pages 33-49.
Full references (including those not matched with items on IDEAS)

Citations

Blog mentions

As found by EconAcademics.org, the blog aggregator for Economics research:
  1. DSGE models and forecasting
    by Christian Zimmermann in NEP-DGE blog on 2009-12-21 00:35:25
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Rangan Gupta & Marius Jurgilas & Stephen M. Miller & Dylan van Wyk, 2010. "Financial Market Liberalization, Monetary Policy, and Housing Price Dynamics," Working Papers 201009, University of Pretoria, Department of Economics.
  2. Philipp an de Meulen & Martin Micheli & Torsten Schmidt, 2011. "Forecasting House Prices in Germany," Ruhr Economic Papers 0294, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
  3. Plakandaras, Vasilios & Gupta, Rangan & Papadimitriou, Theophilos & Gogas, Periklis, 2014. "Forecasting the U.S. Real House Price Index," DUTH Research Papers in Economics 10-2014, Democritus University of Thrace, Department of Economics.
  4. Rangan Gupta, 2012. "Forecasting House Prices for the Four Census Regions and the Aggregate US Economy: The Role of a Data-Rich Environment," Working Papers 201214, University of Pretoria, Department of Economics.
  5. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2012. "Was the Recent Downturn in US GDP Predictable?," Working Papers 201230, University of Pretoria, Department of Economics.
  6. Sarah Drought & Chris McDonald, 2011. "Forecasting house price inflation: a model combination approach," Reserve Bank of New Zealand Discussion Paper Series DP2011/07, Reserve Bank of New Zealand.
  7. Natalia Bailey & Sean Holly & N. Hashem Pesaran, 2013. "A Two Stage Approach to Spatiotemporal Analysis with Strong and weak cross Sectional Dependence," Cambridge Working Papers in Economics 1362, Faculty of Economics, University of Cambridge.
  8. Zietz, Joachim & Traian, Anca, 2014. "When was the U.S. housing downturn predictable? A comparison of univariate forecasting methods," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 271-281.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:nlv:wpaper:1001. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bill Robinson).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.