Advanced Search
MyIDEAS: Login

Using Large Data Sets to Forecast Sectoral Employment

Contents:

Author Info

  • Rangan Gupta

    ()
    (Department of Economics, University of Pretoria)

  • Alain Kabundi

    ()
    (Department of Economics and Econometrics, University of Johannesburg)

  • Stephen M. Miller

    ()
    (Department of Economics, University of Nevada, Las Vegas)

  • Josine Uwilingiye

    ()
    (Department of Economics and Econometrics, University of Johannesburg)

Abstract

We implement several Bayesian and classical models to forecast employment for eight sectors of the US economy. In addition to standard vector-autoregressive and Bayesian vector autoregressive models, we also include the information content of 143 additional monthly series in some models. Several approaches exist for incorporating information from a large number of series. We consider two approaches – extracting common factors (principle components) in a factor-augmented vector autoregressive or vector error-correction, Bayesian factor-augmented vector autoregressive or vector error-correction models, or Bayesian shrinkage in a large-scale Bayesian vector autoregressive models. Using the period of January 1972 to December 1999 as the in-sample period and January 2000 to March 2009 as the out-of-sample horizon, we compare the forecast performance of the alternative models. Finally, we forecast out-of sample from April 2009 through March 2010, using the best forecasting model for each employment series. We find that factor augmented models, especially error-correction versions, generally prove the best in out-of-sample forecast performance, implying that in addition to macroeconomic variables, incorporating long-run relationships along with short-run dynamics play an important role in forecasting employment.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://web.unlv.edu/projects/RePEc/pdf/1106.pdf
File Function: First version, 2011
Download Restriction: no

Bibliographic Info

Paper provided by University of Nevada, Las Vegas , Department of Economics in its series Working Papers with number 1106.

as in new window
Length: 42 pages
Date of creation: Mar 2011
Date of revision:
Handle: RePEc:nlv:wpaper:1106

Contact details of provider:
Phone: (702) 895-3776
Fax: (702) 895-1354
Web page: http://business.unlv.edu/econ/
More information through EDIRC

Related research

Keywords: Sectoral Employment; Forecasting; Factor Augmented Models; Large-Scale BVAR models;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. ZELLNER, Arnold & PALM, Franz, . "Time series analysis and simultaneous equation econometric models," CORE Discussion Papers RP -173, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  2. Domenico Giannone & Martha Banbura & Lucrezia Reichlin, 2008. "Bayesian VARs with large panels," ULB Institutional Repository 2013/13388, ULB -- Universite Libre de Bruxelles.
  3. Rangan Gupta & Stephen M. Miller, 2009. ""Ripple Effects” and Forecasting Home Prices in Los Angeles, Las Vegas, and Phoenix," Working Papers 0902, University of Nevada, Las Vegas , Department of Economics.
  4. Boivin, Jean & Ng, Serena, 2005. "Understanding and Comparing Factor-Based Forecasts," MPRA Paper 836, University Library of Munich, Germany.
  5. Banerjee, Anindya & Marcellino, Massimiliano, 2008. "Factor-augmented Error Correction Models," CEPR Discussion Papers 6707, C.E.P.R. Discussion Papers.
  6. James H. Stock & Mark W. Watson, 2001. "Forecasting Output and Inflation: The Role of Asset Prices," NBER Working Papers 8180, National Bureau of Economic Research, Inc.
  7. Das, Sonali & Gupta, Rangan & Kabundi, Alain, 2009. "Could we have predicted the recent downturn in the South African housing market?," Journal of Housing Economics, Elsevier, vol. 18(4), pages 325-335, December.
  8. Todd E. Clark & Michael W. McCracken, 2000. "Tests of Equal Forecast Accuracy and Encompassing for Nested Models," Econometric Society World Congress 2000 Contributed Papers 0319, Econometric Society.
  9. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-44, January.
  10. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
  11. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
  12. Jushan Bai & Serena Ng, 2001. "A Panic Attack on Unit Roots and Cointegration," Economics Working Paper Archive 469, The Johns Hopkins University,Department of Economics.
  13. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
  14. Igor Masten & Massimiliano Marcellino & Anindya Banerjeey, 2009. "Forecasting with Factor-augmented Error Correction Models," RSCAS Working Papers 2009/32, European University Institute.
  15. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1986. "Forecasting and conditional projection using realistic prior distribution," Staff Report 93, Federal Reserve Bank of Minneapolis.
  16. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  17. Taylor, Carol A., 1982. "Econometric modeling of urban and other substate areas : An analysis of alternative methodologies," Regional Science and Urban Economics, Elsevier, vol. 12(3), pages 425-448, August.
  18. David E. Rapach & Jack K. Strauss, 2005. "Forecasting employment growth in Missouri with many potentially relevant predictors: an analysis of forecast combining methods," Regional Economic Development, Federal Reserve Bank of St. Louis, issue Nov, pages 97-112.
  19. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
  20. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
  21. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
  22. Richard M. Todd, 1984. "Improving economic forecasting with Bayesian vector autoregression," Quarterly Review, Federal Reserve Bank of Minneapolis, issue Fall.
  23. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
  24. Bai, Jushan, 2004. "Estimating cross-section common stochastic trends in nonstationary panel data," Journal of Econometrics, Elsevier, vol. 122(1), pages 137-183, September.
  25. Glennon, Dennis & Lane, Julia & Johnson, Stanley, 1987. "Regional econometric models that reflect labor market relations," International Journal of Forecasting, Elsevier, vol. 3(2), pages 299-312.
  26. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:nlv:wpaper:1106. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bill Robinson).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.